Lymphoma in Other Diseases

  • William B. Ershler
  • Barbara K. Dunn
  • Dan L. Longo


When lymphomas occur in association with other diseases, usually the underlying disease or its treatment produces immunodysregulation [1]. In most cases, this immune dysfunction takes the form of immunodeficiency, which can result from either inherited or acquired defects [2]. Such acquired immunodeficiencies may be associated with infectious diseases, most commonly viral infections [3–6], transplants with intentional iatrogenic immunosuppression [7, 8], and chemical environmental agents [9, 10]. However, in the autoimmune disorders, a different set of mechanisms are operative, since affected individuals demonstrate hyperactivity of the immune system.


Lymphoma and breast cancer Lymphoma and adenocarcinoma Lymphoma and melanoma Lymphoma and immunologic disorders 



This work was supported in its entirety by the Intramural Research Program, National Institute on Aging.


  1. 1.
    Louie S, Daoust PR, Schwartz RS. Immunodeficiency and the pathogenesis of non-Hodgkin’s lymphoma. Semin Oncol. 1980; 7(3):267–84.PubMedGoogle Scholar
  2. 2.
    Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22(5): 261–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Purtilo DT, Stevenson M. Lymphotropic viruses as etiologic agents of lymphoma. Hematol Oncol Clin North Am. 1991;5(5):901–23.PubMedGoogle Scholar
  4. 4.
    Hjalgrim H, Engels EA. Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Intern Med. 2008;264(6):537–48.PubMedCrossRefGoogle Scholar
  5. 5.
    Engels EA. Infectious agents as causes of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2007;16(3):401–4.PubMedCrossRefGoogle Scholar
  6. 6.
    de Martel C, Franceschi S. Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol. 2009; 70(3):183–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Penn I. Tumors arising in organ transplant recipients. Adv Cancer Res. 1978;28:31–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Penn I. Tumors after renal and cardiac transplantation. Hematol Oncol Clin North Am. 1993;7(2):431–45.PubMedGoogle Scholar
  9. 9.
    Palackdharry CS. The epidemiology of non-Hodgkin’s lymphoma: why the increased incidence? Oncology (Williston Park). 1994;8(8):67–73. discussion 73–8.Google Scholar
  10. 10.
    Zahm SH, Blair A. Pesticides and non-Hodgkin’s lymphoma. Cancer Res. 1992;52(19 Suppl):5485s–8s.PubMedGoogle Scholar
  11. 11.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.PubMedCrossRefGoogle Scholar
  12. 12.
    Devesa SS, Silverman DT, Young Jr JL, et al. Cancer incidence and mortality trends among whites in the United States, 1947–84. J Natl Cancer Inst. 1987;79(4):701–70.PubMedGoogle Scholar
  13. 13.
    Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin. 2000;50(1):7–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Karp JE, Broder S. Acquired immunodeficiency syndrome and non-Hodgkin’s lymphomas. Cancer Res. 1991;51(18):4743–56.PubMedGoogle Scholar
  15. 15.
    Biggar RJ. AIDS-related cancers in the era of highly active antiretroviral therapy. Oncology (Williston Park). 2001;15(4):439–48. discussion 448–9.Google Scholar
  16. 16.
    Longo DL. The Palackharry article reviewed. Oncology. 1994;3:73–7.Google Scholar
  17. 17.
    Remick SC, McSharry JJ, Wolf BC, et al. Novel oral combination chemotherapy in the treatment of intermediate-grade and high-grade AIDS-related non-Hodgkin’s lymphoma. J Clin Oncol. 1993;11(9):1691–702.PubMedGoogle Scholar
  18. 18.
    Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS. Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell. 1994;79(7):1137–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Penn I. Cancers complicating organ transplantation. N Engl J Med. 1990;323(25):1767–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Penn I. The changing pattern of posttransplant malignancies. Transplant Proc. 1991;23(1 Pt 2):1101–3.PubMedGoogle Scholar
  21. 21.
    Moore RD, Kessler H, Richman DD, Flexner C, Chaisson RE. Non-Hodgkin’s lymphoma in patients with advanced HIV infection treated with zidovudine. JAMA. 1991;265(17):2208–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Pluda JM, Yarchoan R, Jaffe ES, et al. Development of non-Hodgkin lymphoma in a cohort of patients with severe human immunodeficiency virus (HIV) infection on long-term antiretroviral therapy. Ann Intern Med. 1990;113(4):276–82.PubMedGoogle Scholar
  23. 23.
    Llibre JM, Falco V, Tural C, et al. The changing face of HIV/AIDS in treated patients. Curr HIV Res. 2009;7(4):365–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Barbaro G, Barbarini G. HIV infection and cancer in the era of highly active antiretroviral therapy (Review). Oncol Rep. 2007; 17(5):1121–6.PubMedGoogle Scholar
  25. 25.
    Gail MH, Pluda JM, Rabkin CS, et al. Projections of the incidence of non-Hodgkin’s lymphoma related to acquired immunodeficiency syndrome. J Natl Cancer Inst. 1991;83(10):695–701.PubMedCrossRefGoogle Scholar
  26. 26.
    Hartge P, Devesa SS. Quantification of the impact of known risk factors on time trends in non-Hodgkin’s lymphoma incidence. Cancer Res. 1992;52(19 Suppl):5566s–9s.PubMedGoogle Scholar
  27. 27.
    Levine AM. Acquired immunodeficiency syndrome-related lymphoma. Blood. 1992;80(1):8–20.PubMedGoogle Scholar
  28. 28.
    List AF, Greco FA, Vogler LB. Lymphoproliferative diseases in immunocompromised hosts: the role of Epstein-Barr virus. J Clin Oncol. 1987;5(10):1673–89.PubMedGoogle Scholar
  29. 29.
    Nasir S, DeAngelis LM. Update on the management of primary CNS lymphoma. Oncology (Williston Park). 2000;14(2):228–34. discussion 237–42, 244.Google Scholar
  30. 30.
    De PI. De novo tumors in pediatric organ transplant recipients. Transplant Proc. 1994;26(1):1–2.Google Scholar
  31. 31.
    Penn I. De novo malignancy in pediatric organ transplant recipients. J Pediatr Surg. 1994;29(2):221–6. discussion 227–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Hanto DW, Frizzera G, Gajl-Peczalska KJ, Simmons RL. Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation. 1985;39(5):461–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanto DW, Frizzera G, Purtilo DT, et al. Clinical spectrum of lymphoproliferative disorders in renal transplant recipients and evidence for the role of Epstein-Barr virus. Cancer Res. 1981;41(11 Pt 1): 4253–61.PubMedGoogle Scholar
  34. 34.
    Purtilo DT, Sakamoto K, Saemundsen AK, et al. Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threatening lymphoproliferative diseases by clinical, virological, and immunopathological studies. Cancer Res. 1981;41(11 Pt 1): 4226–36.PubMedGoogle Scholar
  35. 35.
    Cremer KJ, Spring SB, Gruber J. Role of human immunodeficiency virus type 1 and other viruses in malignancies associated with acquired immunodeficiency disease syndrome. J Natl Cancer Inst. 1990;82(12):1016–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Temin HM. Evolution of cancer genes as a mutation-driven process. Cancer Res. 1988;48(7):1697–701.PubMedGoogle Scholar
  37. 37.
    Coleman WB, Tsongalis GJ. Molecular mechanisms of human carcinogenesis. EXS. 2006;96:321–49.PubMedGoogle Scholar
  38. 38.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.PubMedCrossRefGoogle Scholar
  39. 39.
    Clark W. The role of tumor progression and the progression of cancer. In: Greenwald P, Kramer BS, Weed D, editors. Cancer prevention and control. New York: Marcel Dekker; 1995. p. 135–59.Google Scholar
  40. 40.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9): 525–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Lenz G, Staudt LM. Aggressive lymphomas. N Engl J Med. 2010;362(15):1417–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Farber E. Cell proliferation as a major risk factor for cancer: a ­concept of doubtful validity. Cancer Res. 1995;55(17):3759–62.PubMedGoogle Scholar
  45. 45.
    Shibata D, Weiss LM, Nathwani BN, Brynes RK, Levine AM. Epstein-Barr virus in benign lymph node biopsies from individuals infected with the human immunodeficiency virus is associated with concurrent or subsequent development of non-Hodgkin’s lymphoma. Blood. 1991;77(7):1527–33.PubMedGoogle Scholar
  46. 46.
    Gauwerky CE, Haluska FG, Tsujimoto Y, Nowell PC, Croce CM. Evolution of B-cell malignancy: pre-B-cell leukemia resulting from MYC activation in a B-cell neoplasm with a rearranged BCL2 gene. Proc Natl Acad Sci USA. 1988;85(22):8548–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Birx DL, Redfield RR, Tosato G. Defective regulation of Epstein-Barr virus infection in patients with acquired immunodeficiency syndrome (AIDS) or AIDS-related disorders. N Engl J Med. 1986;314(14):874–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Rooney CM, Rowe M, Wallace LE, Rickinson AB. Epstein-Barr virus-positive Burkitt’s lymphoma cells not recognized by virus-specific T-cell surveillance. Nature. 1985;317(6038):629–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Parsonnet J, Hansen S, Rodriguez L, et al. Helicobacter pylori infection and gastric lymphoma. N Engl J Med. 1994;330(18): 1267–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Haber D, Harlow E. Tumour-suppressor genes: evolving definitions in the genomic age. Nat Genet. 1997;16(4):320–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci USA. 1993;90(23):10914–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang Y, Peng J, Tang Y, He J, Peng J, Zhao Q, He R, Xie X, Peng X, Gan R. The prevalence of Epstein-barr virus infection in different types and sites of lymphomas. Jpn J Infect Dis. 2010;63(2): 132–5.PubMedGoogle Scholar
  53. 53.
    Shah KM, Young LS. Epstein-Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin Microbiol Infect. 2009;15(11): 982–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Samanta M, Takada K. Modulation of innate immunity system by Epstein-Barr virus-encoded non-coding RNA and oncogenesis. Cancer Sci. 2010;101(1):29–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Thorley-Lawson DA, Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350(13):1328–37.PubMedCrossRefGoogle Scholar
  56. 56.
    Baumforth KR, Young LS, Flavell KJ, Constandinou C, Murray PG. The Epstein-Barr virus and its association with human cancers. Mol Pathol. 1999;52(6):307–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Brooks LA, Lear AL, Young LS, Rickinson AB. Transcripts from the Epstein-Barr virus BamHI A fragment are detectable in all three forms of virus latency. J Virol. 1993;67(6):3182–90.PubMedGoogle Scholar
  58. 58.
    Cohen JI. Epstein-Barr virus infection. N Engl J Med. 2000;343(7):481–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Hsu JL, Glaser SL. Epstein-barr virus-associated malignancies: epidemiologic patterns and etiologic implications. Crit Rev Oncol Hematol. 2000;34(1):27–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Kawa K. Epstein-Barr virus-associated diseases in humans. Int J Hematol. 2000;71(2):108–17.PubMedGoogle Scholar
  61. 61.
    Pagano JS. Epstein-Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians. 1999;111(6):573–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Gruhne B, Kamranvar SA, Masucci MG, Sompallae R. EBV and genomic instability–a new look at the role of the virus in the pathogenesis of Burkitt’s lymphoma. Semin Cancer Biol. 2009;19(6): 394–400.PubMedCrossRefGoogle Scholar
  63. 63.
    De Falco G, Antonicelli G, Onnis A, Lazzi S, Bellan C, Leoncini L. Role of EBV in microRNA dysregulation in Burkitt lymphoma. Semin Cancer Biol. 2009;19(6):401–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Magrath IT, Freeman CB, Pizzo P, et al. Characterization of lymphoma-derived cell lines: comparison of cell lines positive and negative for Epstein-Barr virus nuclear antigen. II. Surface markers. J Natl Cancer Inst. 1980;64(3):477–83.PubMedGoogle Scholar
  65. 65.
    Moore MD, Cooper NR, Tack BF, Nemerow GR. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci USA. 1987;84(24):9194–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Nemerow GR, Wolfert R, McNaughton ME, Cooper NR. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J Virol. 1985;55(2):347–51.PubMedGoogle Scholar
  67. 67.
    Thorley-Lawson DA. Basic virological aspects of Epstein-Barr virus infection. Semin Hematol. 1988;25(3):247–60.PubMedGoogle Scholar
  68. 68.
    Berard CW, Greene MH, Jaffe ES, Magrath I, Ziegler J. NIH conference. A multidisciplinary approach to non-hodgkin’s lymphomas. Ann Intern Med. 1981;94(2):218–35.PubMedGoogle Scholar
  69. 69.
    Chang RS, Lewis JP, Abildgaard CF. Prevalence of oropharyngeal excreters of leukocyte-transforming agents among a human population. N Engl J Med. 1973;289(25):1325–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Hanto DW, Frizzera G, Gajl-Peczalska KJ, et al. Epstein-Barr virus-induced B-cell lymphoma after renal transplantation: acyclovir therapy and transition from polyclonal to monoclonal B-cell proliferation. N Engl J Med. 1982;306(15):913–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med. 1984;310(19):1225–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Miller G. Epstein-Barr virus–immortalization and replication. N Engl J Med. 1984;310(19):1255–6.PubMedCrossRefGoogle Scholar
  73. 73.
    O’Grady J, Stewart S, Elton RA, Krajewski AS. Epstein-Barr virus in Hodgkin’s disease and site of origin of tumour. Lancet. 1994;343(8892):265–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Anagnostopoulos I, Hummel M, Kreschel C, Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995;85(3):744–50.PubMedGoogle Scholar
  75. 75.
    Brooks LA, Crook T, Crawford DH. Epstein-Barr virus and lymphomas. Cancer Surv. 1999;33:99–123.Google Scholar
  76. 76.
    Niedobitek G, Young LS. Epstein-Barr virus persistence and virus-associated tumours. Lancet. 1994;343(8893):333–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Tsoukas CD, Lambris JD. Expression of EBV/C3d receptors on T cells: biological significance. Immunol Today. 1993;14(2):56–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Koizumi S, Zhang XK, Imai S, Sugiura M, Usui N, Osato T. Infection of the HTLV-I-harbouring T-lymphoblastoid line MT-2 by Epstein-Barr virus. Virology. 1992;188(2):859–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Sinha SK, Todd SC, Hedrick JA, Speiser CL, Lambris JD, Tsoukas CD. Characterization of the EBV/C3d receptor on the human Jurkat T cell line: evidence for a novel transcript. J Immunol. 1993;150(12):5311–20.PubMedGoogle Scholar
  80. 80.
    Watry D, Hedrick JA, Siervo S, et al. Infection of human thymocytes by Epstein-Barr virus. J Exp Med. 1991;173(4):971–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Yoshiyama H, Shimizu N, Takada K. Persistent Epstein-Barr virus infection in a human T-cell line: unique program of latent virus expression. EMBO J. 1995;14(15):3706–11.PubMedGoogle Scholar
  82. 82.
    Ho FC, Srivastava G, Loke SL, et al. Presence of Epstein-Barr virus DNA in nasal lymphomas of B and ‘T’ cell type. Hematol Oncol. 1990;8(5):271–81.PubMedCrossRefGoogle Scholar
  83. 83.
    Imai S, Sugiura M, Oikawa O, et al. Epstein-Barr virus (EBV)-carrying and -expressing T-cell lines established from severe chronic active EBV infection. Blood. 1996;87(4):1446–57.PubMedGoogle Scholar
  84. 84.
    Jones JF, Shurin S, Abramowsky C, et al. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med. 1988;318(12):733–41.PubMedCrossRefGoogle Scholar
  85. 85.
    Korbjuhn P, Anagnostopoulos I, Hummel M, et al. Frequent latent Epstein-Barr virus infection of neoplastic T cells and bystander B cells in human immunodeficiency virus-negative European peripheral pleomorphic T-cell lymphomas. Blood. 1993;82(1):217–23.PubMedGoogle Scholar
  86. 86.
    Minarovits J, Hu LF, Imai S, et al. Clonality, expression and methylation patterns of the Epstein-Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T cell lymphomas. J Gen Virol. 1994;75(Pt 1):77–84.PubMedCrossRefGoogle Scholar
  87. 87.
    Su IJ, Lin KH, Chen CJ, et al. Epstein-Barr virus-associated peripheral T-cell lymphoma of activated CD8 phenotype. Cancer. 1990;66(12):2557–62.PubMedCrossRefGoogle Scholar
  88. 88.
    Oudejans JJ, van den Brule AJ, Jiwa NM, et al. BHRF1, the Epstein-Barr virus (EBV) homologue of the BCL-2 protooncogene, is transcribed in EBV-associated B-cell lymphomas and in reactive lymphocytes. Blood. 1995;86(5):1893–902.PubMedGoogle Scholar
  89. 89.
    Kurth J, Spieker T, Wustrow J, et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity. 2000;13(4): 485–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Kurth J, Hansmann ML, Rajewsky K, Kuppers R. Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci USA. 2003;100(8):4730–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Allan GJ, Inman GJ, Parker BD, Rowe DT, Farrell PJ. Cell growth effects of Epstein-Barr virus leader protein. J Gen Virol. 1992;73(Pt 6): 1547–51.PubMedCrossRefGoogle Scholar
  92. 92.
    Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature. 1989;340(6232):393–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Manet E, Bourillot PY, Waltzer L, Sergeant A. EBV genes and B cell proliferation. Crit Rev Oncol Hematol. 1998;28(2):129–37.PubMedCrossRefGoogle Scholar
  94. 94.
    Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E. The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol. 1991;65(12):6826–37.PubMedGoogle Scholar
  95. 95.
    Sinclair AJ, Palmero I, Peters G, Farrell PJ. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J. 1994;13(14):3321–8.PubMedGoogle Scholar
  96. 96.
    Klein E, Kis LL, Takahara M. Pathogenesis of Epstein-Barr virus (EBV)-carrying lymphomas. Acta Microbiol Immunol Hung. 2006;53(4):441–57.PubMedCrossRefGoogle Scholar
  97. 97.
    Hamilton-Dutoit SJ, Raphael M, Audouin J, et al. In situ demonstration of Epstein-Barr virus small RNAs (EBER 1) in acquired immunodeficiency syndrome-related lymphomas: correlation with tumor morphology and primary site. Blood. 1993;82(2): 619–24.PubMedGoogle Scholar
  98. 98.
    Hamilton-Dutoit SJ, Rea D, Raphael M, et al. Epstein-Barr virus-latent gene expression and tumor cell phenotype in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Correlation of lymphoma phenotype with three distinct patterns of viral latency. Am J Pathol. 1993;143(4):1072–85.PubMedGoogle Scholar
  99. 99.
    Rea D, Delecluse HJ, Hamilton-Dutoit SJ, et al. Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin’s lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann Oncol. 1994;5 Suppl 1:113–6.PubMedGoogle Scholar
  100. 100.
    Shibata D, Weiss LM, Hernandez AM, Nathwani BN, Bernstein L, Levine AM. Epstein-Barr virus-associated non-Hodgkin’s lymphoma in patients infected with the human immunodeficiency virus. Blood. 1993;81(8):2102–9.PubMedGoogle Scholar
  101. 101.
    Rowe M, Rowe DT, Gregory CD, et al. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 1987;6(9):2743–51.PubMedGoogle Scholar
  102. 102.
    Deacon EM, Pallesen G, Niedobitek G, et al. Epstein-Barr virus and Hodgkin’s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med. 1993;177(2):339–49.PubMedCrossRefGoogle Scholar
  103. 103.
    Gregory CD, Dive C, Henderson S, et al. Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis. Nature. 1991;349(6310):612–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Henderson S, Rowe M, Gregory C, et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991;65(7):1107–15.PubMedCrossRefGoogle Scholar
  105. 105.
    Dreyfus DH, Nagasawa M, Kelleher CA, Gelfand EW. Stable expression of Epstein-Barr virus BZLF-1-encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood. 2000;96(2):625–34.PubMedGoogle Scholar
  106. 106.
    Grogan E, Jenson H, Countryman J, Heston L, Gradoville L, Miller G. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci USA. 1987;84(5):1332–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Rothe R, Liguori L, Villegas-Mendez A, Marques B, Grunwald D, Drouet E, Lenormand JL. Characterization of the cell-penetrating properties of the Epstein-Barr virus ZEBRA trans-activator. J Biol Chem. 2010;285(26):20224–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Yao QY, Croom-Carter DS, Tierney RJ, et al. Epidemiology of infection with Epstein-Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised hemophilic cohort. J Virol. 1998;72(5):4352–63.PubMedGoogle Scholar
  109. 109.
    Khanim F, Yao QY, Niedobitek G, Sihota S, Rickinson AB, Young LS. Analysis of Epstein-Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood. 1996;88(9):3491–501.PubMedGoogle Scholar
  110. 110.
    Yao QY, Rowe M, Martin B, Young LS, Rickinson AB. The Epstein-Barr virus carrier state: dominance of a single growth-transforming isolate in the blood and in the oropharynx of healthy virus carriers. J Gen Virol. 1991;72(Pt 7):1579–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Srivastava T, Zwick DL, Rothberg PG, Warady BA. Posttransplant lymphoproliferative disorder in pediatric renal transplantation. Pediatr Nephrol. 1999;13(9):748–54.PubMedCrossRefGoogle Scholar
  112. 112.
    Yao QY, Tierney RJ, Croom-Carter D, et al. Frequency of multiple Epstein-Barr virus infections in T-cell-immunocompromised individuals. J Virol. 1996;70(8):4884–94.PubMedGoogle Scholar
  113. 113.
    Schuster V, Ott G, Seidenspinner S, Kreth HW. Common Epstein-Barr virus (EBV) type-1 variant strains in both malignant and benign EBV-associated disorders. Blood. 1996;87(4):1579–85.PubMedGoogle Scholar
  114. 114.
    Knecht H, Bachmann E, Brousset P, et al. Mutational hot spots within the carboxy terminal region of the LMP1 oncogene of Epstein-Barr virus are frequent in lymphoproliferative disorders. Oncogene. 1995;10(3):523–8.PubMedGoogle Scholar
  115. 115.
    Chiang AK, Wong KY, Liang AC, Srivastava G. Comparative analysis of Epstein-Barr virus gene polymorphisms in nasal T/NK-cell lymphomas and normal nasal tissues: implications on virus strain selection in malignancy. Int J Cancer. 1999;80(3):356–64.PubMedCrossRefGoogle Scholar
  116. 116.
    Tacyildiz N, Cavdar AO, Ertem U, et al. Unusually high frequency of a 69-bp deletion within the carboxy terminus of the LMP-1 oncogene of Epstein-Barr virus detected in Burkitt’s lymphoma of Turkish children. Leukemia. 1998;12(11):1796–805.PubMedCrossRefGoogle Scholar
  117. 117.
    Sandvej K, Peh SC, Andresen BS, Pallesen G. Identification of potential hot spots in the carboxy-terminal part of the Epstein-Barr virus (EBV) BNLF-1 gene in both malignant and benign EBV-associated diseases: high frequency of a 30-bp deletion in Malaysian and Danish peripheral T-cell lymphomas. Blood. 1994;84(12):4053–60.PubMedGoogle Scholar
  118. 118.
    Knecht H, Berger C, al-Homsi AS, McQuain C, Brousset P. Epstein-Barr virus oncogenesis. Crit Rev Oncol Hematol. 1997;26(2):117–35.PubMedCrossRefGoogle Scholar
  119. 119.
    Snudden DK, Hearing J, Smith PR, Grasser FA, Griffin BE. EBNA-1, the major nuclear antigen of Epstein-Barr virus, resembles ‘RGG’ RNA binding proteins. EMBO J. 1994;13(20):4840–7.PubMedGoogle Scholar
  120. 120.
    Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA. 1984;81(12):3806–10.PubMedCrossRefGoogle Scholar
  121. 121.
    Roth G, Curiel T, Lacy J. Epstein-Barr viral nuclear antigen 1 antisense oligodeoxynucleotide inhibits proliferation of Epstein-Barr virus-immortalized B cells. Blood. 1994;84(2):582–7.PubMedGoogle Scholar
  122. 122.
    Feuillard J, Schuhmacher M, Kohanna S, et al. Inducible loss of NF-kappaB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood. 2000;95(6):2068–75.PubMedGoogle Scholar
  123. 123.
    Henkel T, Ling PD, Hayward SD, Peterson MG. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science. 1994;265(5168):92–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Hsieh JJ, Hayward SD. Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science. 1995;268(5210):560–3.PubMedCrossRefGoogle Scholar
  125. 125.
    Mosialos G. The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription. Semin Cancer Biol. 1997;8(2):121–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Waltzer L, Logeat F, Brou C, Israel A, Sergeant A, Manet E. The human J kappa recombination signal sequence binding protein (RBP-J kappa) targets the Epstein-Barr virus EBNA2 protein to its DNA responsive elements. EMBO J. 1994;13(23):5633–8.PubMedGoogle Scholar
  127. 127.
    Fahraeus R, Palmqvist L, Nerdstedt A, Farzad S, Rymo L, Lain S. Response to cAMP levels of the Epstein-Barr virus EBNA2-inducible LMP1 oncogene and EBNA2 inhibition of a PP1-like activity. EMBO J. 1994;13(24):6041–51.PubMedGoogle Scholar
  128. 128.
    Laux G, Adam B, Strobl LJ, Moreau-Gachelin F. The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J. 1994;13(23):5624–32.PubMedGoogle Scholar
  129. 129.
    Li HP, Chang YS. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci. 2003;10(5):490–504.PubMedCrossRefGoogle Scholar
  130. 130.
    Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–3.PubMedCrossRefGoogle Scholar
  132. 132.
    Camilleri-Broet S, Camparo P, Mokhtari K, et al. Overexpression of BCL-2, BCL-X, and BAX in primary central nervous system lymphomas that occur in immunosuppressed patients. Mod Pathol. 2000;13(2):158–65.PubMedCrossRefGoogle Scholar
  133. 133.
    Yamaoka S, Inoue H, Sakurai M, et al. Constitutive activation of NF-kappa B is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J. 1996;15(4):873–87.PubMedGoogle Scholar
  134. 134.
    Arvanitakis L, Yaseen N, Sharma S. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol. 1995;155(3):1047–56.PubMedGoogle Scholar
  135. 135.
    Cohen JI, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA. 1989;86(23):9558–62.PubMedCrossRefGoogle Scholar
  136. 136.
    Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell. 1985;43(3 Pt 2):831–40.PubMedCrossRefGoogle Scholar
  137. 137.
    Wang F, Gregory C, Sample C, et al. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990;64(5):2309–18.PubMedGoogle Scholar
  138. 138.
    West MJ. Structure and function of the Epstein-Barr virus transcription factor, EBNA 3C. Curr Protein Pept Sci. 2006;7(2):123–36.PubMedCrossRefGoogle Scholar
  139. 139.
    Parker GA, Crook T, Bain M, Sara EA, Farrell PJ, Allday MJ. Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene. 1996;13(12):2541–9.PubMedGoogle Scholar
  140. 140.
    Schwartz RS. Epstein-Barr virus–oncogen or mitogen? N Engl J Med. 1980;302(23):1307–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Wade M, Allday MJ. Epstein-Barr virus suppresses a G(2)/M checkpoint activated by genotoxins. Mol Cell Biol. 2000;20(4): 1344–60.PubMedCrossRefGoogle Scholar
  142. 142.
    Murray PG, Swinnen LJ, Constandinou CM, et al. BCL-2 but not its Epstein-Barr virus-encoded homologue, BHRF1, is commonly expressed in posttransplantation lymphoproliferative disorders. Blood. 1996;87(2):706–11.PubMedGoogle Scholar
  143. 143.
    Rickinson AB, Yao QY, Wallace LE. The Epstein-Barr virus as a model of virus-host interactions. Br Med Bull. 1985;41(1):75–9.PubMedGoogle Scholar
  144. 144.
    Yang J, Lemas VM, Flinn IW, Krone C, Ambinder RF. Application of the ELISPOT assay to the characterization of CD8(+) responses to Epstein-Barr virus antigens. Blood. 2000;95(1):241–8.PubMedGoogle Scholar
  145. 145.
    Curtis RE, Travis LB, Rowlings PA, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood. 1999;94(7):2208–16.PubMedGoogle Scholar
  146. 146.
    Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2(5):551–5.PubMedCrossRefGoogle Scholar
  147. 147.
    Heslop HE, Perez M, Benaim E, Rochester R, Brenner MK, Rooney CM. Transfer of EBV-specific CTL to prevent EBV lymphoma post bone marrow transplant. J Clin Apher. 1999;14(3): 154–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Moss DJ, Khanna R, Sherritt M, Elliott SL, Burrows SR. Developing immunotherapeutic strategies for the control of Epstein-Barr virus-associated malignancies. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S80–3.PubMedGoogle Scholar
  149. 149.
    Sun Q, Pollok KE, Burton RL, et al. Simultaneous ex vivo expansion of cytomegalovirus and Epstein-Barr virus-specific cytotoxic T lymphocytes using B-lymphoblastoid cell lines expressing cytomegalovirus pp 65. Blood. 1999;94(9):3242–50.PubMedGoogle Scholar
  150. 150.
    Brenner MK, Heslop HE. Adoptive T cell therapy of cancer. Curr Opin Immunol. 2010;22(2):251–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Caldas C, Ambinder R. Epstein-Barr virus and bone marrow transplantation. Curr Opin Oncol. 1995;7(2):102–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Liebowitz D. Epstein-Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients. N Engl J Med. 1998;338(20):1413–21.PubMedCrossRefGoogle Scholar
  153. 153.
    Chang RS, Lewis JP, Reynolds RD, Sullivan MJ, Neuman J. Oropharyngeal excretion of Epstein-Barr virus by patients with lymphoproliferative disorders and by recipients of renal homografts. Ann Intern Med. 1978;88(1):34–40.PubMedGoogle Scholar
  154. 154.
    Hsu DH, de Waal Malefyt R, Fiorentino DF, et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science. 1990;250(4982):830–2.PubMedCrossRefGoogle Scholar
  155. 155.
    Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science. 1990;248(4960):1230–4.PubMedCrossRefGoogle Scholar
  156. 156.
    Vieira P, de Waal-Malefyt R, Dang MN, et al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci USA. 1991;88(4):1172–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Tosato G, Steinberg AD, Blaese RM. Defective EBV-specific suppressor T-cell function in rheumatoid arthritis. N Engl J Med. 1981;305(21):1238–43.PubMedCrossRefGoogle Scholar
  158. 158.
    Yokoi T, Miyawaki T, Yachie A, Kato K, Kasahara Y, Taniguchi N. Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology. 1990;70(1):100–5.PubMedGoogle Scholar
  159. 159.
    Shapiro RS. Epstein-Barr virus-associated B-cell lymphoproliferative disorders in immunodeficiency: meeting the challenge. J Clin Oncol. 1990;8(3):371–3.PubMedGoogle Scholar
  160. 160.
    Sakamoto K, Freed HJ, Purtilo DT. Antibody responses to ­Epstein-Barr virus in families with the X-linked lymphoproliferative syndrome. J Immunol. 1980;125(2):921–5.PubMedGoogle Scholar
  161. 161.
    ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science. 1983;222(4622):390–3.PubMedCrossRefGoogle Scholar
  162. 162.
    Croce CM, Nowell PC. Molecular basis of human B cell neoplasia. Blood. 1985;65(1):1–7.PubMedGoogle Scholar
  163. 163.
    Hayday AC, Gillies SD, Saito H, et al. Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature. 1984;307(5949):334–40.PubMedCrossRefGoogle Scholar
  164. 164.
    Klein G. Multiple phenotypic consequences of the Ig/Myc translocation in B-cell-derived tumors. Genes Chromosomes Cancer. 1989;1(1):3–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Nishikura K, ar-Rushdi A, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc Natl Acad Sci USA. 1983;80(15):4822–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Taub R, Moulding C, Battey J, et al. Activation and somatic mutation of the translocated c-myc gene in burkitt lymphoma cells. Cell. 1984;36(2):339–48.PubMedCrossRefGoogle Scholar
  167. 167.
    Haluska FG, Russo G, Kant J, Andreef M, Croce CM. Molecular resemblance of an AIDS-associated lymphoma and endemic Burkitt lymphomas: implications for their pathogenesis. Proc Natl Acad Sci USA. 1989;86(22):8907–11.PubMedCrossRefGoogle Scholar
  168. 168.
    Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci USA. 1988;85(8):2748–52.PubMedCrossRefGoogle Scholar
  169. 169.
    Pelicci PG, Knowles 2nd DM, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA. 1986;83(9):2984–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Shiramizu B, Barriga F, Neequaye J, et al. Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: relevance to geography and Epstein-Barr virus association. Blood. 1991;77(7):1516–26.PubMedGoogle Scholar
  171. 171.
    Shiramizu B, Magrath I. Localization of breakpoints by polymerase chain reactions in Burkitt’s lymphoma with 8;14 translocations. Blood. 1990;75(9):1848–52.PubMedGoogle Scholar
  172. 172.
    Ji L, Arcinas M, Boxer LM. NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt’s lymphoma. Mol Cell Biol. 1994;14(12):7967–74.PubMedGoogle Scholar
  173. 173.
    Cesarman E, Dalla-Favera R, Bentley D, Groudine M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science. 1987;238(4831):1272–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I. Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood. 1994;84(3):883–8.PubMedGoogle Scholar
  175. 175.
    Yu BW, Ichinose I, Bonham MA, Zajac-Kaye M. Somatic mutations in c-myc intron I cluster in discrete domains that define protein binding sequences. J Biol Chem. 1993;268(26):19586–92.PubMedGoogle Scholar
  176. 176.
    Erikson J, ar-Rushdi A, Drwinga HL, Nowell PC, Croce CM. Transcriptional activation of the translocated c-myc oncogene in burkitt lymphoma. Proc Natl Acad Sci USA. 1983;80(3):820–4.PubMedCrossRefGoogle Scholar
  177. 177.
    Erikson J, Nishikura K, ar-Rushdi A, et al. Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA. 1983;80(24):7581–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Kelly K, Cochran BH, Stiles CD, Leder P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell. 1983;35(3 Pt 2):603–10.PubMedCrossRefGoogle Scholar
  179. 179.
    Prochownik EV. Protooncogenes and cell differentiation. Transfus Med Rev. 1989;3(1):24–38.PubMedCrossRefGoogle Scholar
  180. 180.
    Haluska FG, Tsujimoto Y, Croce CM. Oncogene activation by chromosome translocation in human malignancy. Annu Rev Genet. 1987;21:321–45.PubMedCrossRefGoogle Scholar
  181. 181.
    Lombardi L, Newcomb EW, Dalla-Favera R. Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell. 1987;49(2):161–70.PubMedCrossRefGoogle Scholar
  182. 182.
    Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Langdon WY, Harris AW, Cory S, Adams JM. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell. 1986;47(1):11–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Lacy J, Summers WP, Summers WC. Post-transcriptional mechanisms of deregulation of MYC following conversion of a human B cell line by Epstein-Barr virus. EMBO J. 1989;8(7):1973–80.PubMedGoogle Scholar
  185. 185.
    Buisson M, Manet E, Trescol-Biemont MC, Gruffat H, Durand B, Sergeant A. The Epstein-Barr virus (EBV) early protein EB2 is a posttranscriptional activator expressed under the control of EBV transcription factors EB1 and R. J Virol. 1989;63(12):5276–84.PubMedGoogle Scholar
  186. 186.
    Kenney S, Kamine J, Holley-Guthrie E, et al. The Epstein-Barr virus immediate-early gene product, BMLF1, acts in trans by a posttranscriptional mechanism which is reporter gene dependent. J Virol. 1989;63(9):3870–7.PubMedGoogle Scholar
  187. 187.
    Corbo L, Le Roux F, Sergeant A. The EBV early gene product EB2 transforms rodent cells through a signalling pathway involving c-Myc. Oncogene. 1994;9(11):3299–304.PubMedGoogle Scholar
  188. 188.
    Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature. 1992;359(6394):423–6.PubMedCrossRefGoogle Scholar
  189. 189.
    Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature. 1992;359(6394):426–9.PubMedCrossRefGoogle Scholar
  190. 190.
    Cogliati T, Dunn BK, Bar-Ner M, Cultraro CM, Segal S. Transfected wild-type and mutant max regulate cell growth and differentiation of murine erythroleukemia cells. Oncogene. 1993;8(5):1263–8.PubMedGoogle Scholar
  191. 191.
    Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell. 1991;65(3):395–407.PubMedCrossRefGoogle Scholar
  192. 192.
    Haluska FG, Tsujimoto Y, Croce CM. The t(8;14) chromosome translocation of the Burkitt lymphoma cell line Daudi occurred during immunoglobulin gene rearrangement and involved the heavy chain diversity region. Proc Natl Acad Sci USA. 1987;84(19):6835–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Gaidano G, Dalla-Favera R. Molecular pathogenesis of AIDS-related lymphomas. Adv Cancer Res. 1995;67:113–53.PubMedCrossRefGoogle Scholar
  194. 194.
    Weinstein IB. Mitogenesis is only one factor in carcinogenesis. Science. 1991;251(4992):387–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Frizzera G, Hanto DW, Gajl-Peczalska KJ, et al. Polymorphic diffuse B-cell hyperplasias and lymphomas in renal transplant recipients. Cancer Res. 1981;41(11 Pt 1):4262–79.PubMedGoogle Scholar
  196. 196.
    Crompton CH, Cheung RK, Donjon C, et al. Epstein-Barr virus surveillance after renal transplantation. Transplantation. 1994;57(8):1182–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Ballerini P, Gaidano G, Gong JZ, et al. Multiple genetic lesions in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Blood. 1993;81(1):166–76.PubMedGoogle Scholar
  198. 198.
    Lee ES, Locker J, Nalesnik M, et al. The association of Epstein-Barr virus with smooth-muscle tumors occurring after organ transplantation. N Engl J Med. 1995;332(1):19–25.PubMedCrossRefGoogle Scholar
  199. 199.
    McClain KL, Leach CT, Jenson HB, et al. Association of Epstein-Barr virus with leiomyosarcomas in children with AIDS. N Engl J Med. 1995;332(1):12–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Neri A, Barriga F, Inghirami G, et al. Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood. 1991;77(5):1092–5.PubMedGoogle Scholar
  201. 201.
    Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408): 461–73.PubMedCrossRefGoogle Scholar
  202. 202.
    de Leval L, Hasserjian RP. Diffuse large B-cell lymphomas and burkitt lymphoma. Hematol Oncol Clin North Am. 2009;23(4): 791–827.PubMedCrossRefGoogle Scholar
  203. 203.
    Klein G, Klein E. Evolution of tumours and the impact of molecular oncology. Nature. 1985;315(6016):190–5.PubMedCrossRefGoogle Scholar
  204. 204.
    Ziegler JL. Burkitt’s lymphoma. N Engl J Med. 1981;305(13): 735–45.PubMedCrossRefGoogle Scholar
  205. 205.
    Thorley-Lawson DA, Allday MJ. The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol. 2008;6(12):913–24.PubMedCrossRefGoogle Scholar
  206. 206.
    Bernard O, Cory S, Gerondakis S, Webb E, Adams JM. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J. 1983;2(12):2375–83.PubMedGoogle Scholar
  207. 207.
    Douglass EC, Magrath IT, Lee EC, Whang-Peng J. Serial cytogenetic studies of nonendemic Burkitt’s lymphoma cell lines. J Natl Cancer Inst. 1980;65(5):891–5.PubMedGoogle Scholar
  208. 208.
    Willis TG, Dyer MJ. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96(3): 808–22.PubMedGoogle Scholar
  209. 209.
    Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci USA. 2004;101(1): 239–44.PubMedCrossRefGoogle Scholar
  210. 210.
    Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR, Nussenzweig MC. A role for AID in chromosome translocations between c-myc and the IgH variable region. J Exp Med. 2007;204(9):2225–32.PubMedCrossRefGoogle Scholar
  211. 211.
    Emanuel BS, Selden JR, Chaganti RS, Jhanwar S, Nowell PC, Croce CM. The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc Natl Acad Sci USA. 1984;81(8):2444–6.PubMedCrossRefGoogle Scholar
  212. 212.
    Haluska FG, Tsujimoto Y, Croce CM. Mechanisms of chromosome translocation in B- and T-cell neoplasia. Trends Genet. 1987;3:11–5.CrossRefGoogle Scholar
  213. 213.
    Lenoir GM, Preud’homme JL, Bernheim A, Berger R. Correlation between immunoglobulin light chain expression and variant translocation in Burkitt’s lymphoma. Nature. 1982;298(5873):474–6.PubMedCrossRefGoogle Scholar
  214. 214.
    Zech L, Haglund U, Nilsson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17(1):47–56.PubMedCrossRefGoogle Scholar
  215. 215.
    Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol. 2002; 2(12):920–32.PubMedCrossRefGoogle Scholar
  216. 216.
    Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20(40):5580–94.PubMedCrossRefGoogle Scholar
  217. 217.
    Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science. 1983; 219(4587):963–7.PubMedCrossRefGoogle Scholar
  218. 218.
    Taub R, Kirsch I, Morton C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA. 1982;79(24):7837–41.PubMedCrossRefGoogle Scholar
  219. 219.
    Haluska FG, Finver S, Tsujimoto Y, Croce CM. The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature. 1986;324(6093):158–61.PubMedCrossRefGoogle Scholar
  220. 220.
    Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341(20): 1520–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Onizuka T, Moriyama M, Yamochi T, et al. BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood. 1995;86(1):28–37.PubMedGoogle Scholar
  222. 222.
    Klein U, Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8(1):22–33.PubMedCrossRefGoogle Scholar
  223. 223.
    Gregory CD, Tursz T, Edwards CF, et al. Identification of a subset of normal B cells with a Burkitt’s lymphoma (BL)-like phenotype. J Immunol. 1987;139(1):313–8.PubMedGoogle Scholar
  224. 224.
    Benjamin D, Magrath IT, Maguire R, Janus C, Todd HD, Parsons RG. Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt’s and non-Burkitt’s type. J Immunol. 1982;129(3):1336–42.PubMedGoogle Scholar
  225. 225.
    Gelmann EP, Psallidopoulos MC, Papas TS, Dalla-Favera R. Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin mu locus in a Burkitt lymphoma. Nature. 1983;306(5945):799–803.PubMedCrossRefGoogle Scholar
  226. 226.
    Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe ES, Raffeld M. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene. 1993;8(10):2741–8.PubMedGoogle Scholar
  227. 227.
    Levine AM. Lymphoma complicating immunodeficiency disorders. Ann Oncol. 1994;5 Suppl 2:29–35.PubMedGoogle Scholar
  228. 228.
    Perkins AS, Friedberg JW. Burkitt lymphoma in adults. Hematology Am Soc Hematol Educ Program 2008:341–8.Google Scholar
  229. 229.
    Troye-Blomberg M, Perlmann H, Patarroyo ME, Perlmann P. Regulation of the immune response in Plasmodium falciparum malaria. II. Antigen specific proliferative responses in vitro. Clin Exp Immunol. 1983;53(2):345–53.PubMedGoogle Scholar
  230. 230.
    Troye-Blomberg M, Sjoholm PE, Perlmann H, Patarroyo ME, Perlmann P. Regulation of the immune response in Plasmodium falciparum malaria. I. Non-specific proliferative responses in vitro and characterization of lymphocytes. Clin Exp Immunol. 1983;53(2):335–44.PubMedGoogle Scholar
  231. 231.
    Whittle HC, Brown J, Marsh K, et al. T-cell control of Epstein-Barr virus-infected B cells is lost during P. falciparum malaria. Nature. 1984;312(5993):449–50.PubMedCrossRefGoogle Scholar
  232. 232.
    Moss DJ, Burrows SR, Castelino DJ, et al. A comparison of Epstein-Barr virus-specific T-cell immunity in malaria-endemic and -nonendemic regions of Papua New Guinea. Int J Cancer. 1983;31(6):727–32.PubMedCrossRefGoogle Scholar
  233. 233.
    Chene A, Donati D, Orem J, et al. Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol. 2009;19(6):411–20.PubMedCrossRefGoogle Scholar
  234. 234.
    de-The G, Geser A, Day NE, et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt’s lymphoma from Ugandan prospective study. Nature. 1978;274(5673):756–61.PubMedCrossRefGoogle Scholar
  235. 235.
    Geser A, de The G, Lenoir G, Day NE, Williams EH. Final case reporting from the Ugandan prospective study of the relationship between EBV and Burkitt’s lymphoma. Int J Cancer. 1982;29(4): 397–400.PubMedCrossRefGoogle Scholar
  236. 236.
    Pearson GR, Qualtiere LF, Klein G, Norin T, Bal IS. Epstein-Barr virus-specific antibody-dependent cellular cytotoxicity in patients with Burkitt’s lymphoma. Int J Cancer. 1979;24(4):402–6.PubMedCrossRefGoogle Scholar
  237. 237.
    Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372(6502):143–9.PubMedCrossRefGoogle Scholar
  238. 238.
    Lindstrom MS, Wiman KG. Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol. 2002;12(5): 381–7.PubMedCrossRefGoogle Scholar
  239. 239.
    Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol. 2005;5(3):189–200.PubMedCrossRefGoogle Scholar
  240. 240.
    Hemann MT, Bric A, Teruya-Feldstein J, et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005;436(7052):807–11.PubMedCrossRefGoogle Scholar
  241. 241.
    Dang CV, O’Donnell KA, Juopperi T. The great MYC escape in tumorigenesis. Cancer Cell. 2005;8(3):177–8.PubMedCrossRefGoogle Scholar
  242. 242.
    Andiman WA, Eastman R, Martin K, et al. Opportunistic lymphoproliferations associated with Epstein-Barr viral DNA in infants and children with AIDS. Lancet. 1985;2(8469–70):1390–3.PubMedCrossRefGoogle Scholar
  243. 243.
    Guarner J, del Rio C, Carr D, Hendrix LE, Eley JW, Unger ER. Non-Hodgkin’s lymphomas in patients with human immunodeficiency virus infection. Presence of Epstein-Barr virus by in situ hybridization, clinical presentation, and follow-up. Cancer. 1991;68(11):2460–5.PubMedCrossRefGoogle Scholar
  244. 244.
    Pedersen C, Gerstoft J, Lundgren JD, et al. HIV-associated lymphoma: histopathology and association with Epstein-Barr virus genome related to clinical, immunological and prognostic features. Eur J Cancer. 1991;27(11):1416–23.PubMedCrossRefGoogle Scholar
  245. 245.
    Birx DL, Redfield RR, Tencer K, Fowler A, Burke DS, Tosato G. Induction of interleukin-6 during human immunodeficiency virus infection. Blood. 1990;76(11):2303–10.PubMedGoogle Scholar
  246. 246.
    Breen EC, Rezai AR, Nakajima K, et al. Infection with HIV is associated with elevated IL-6 levels and production. J Immunol. 1990;144(2):480–4.PubMedGoogle Scholar
  247. 247.
    Emilie D, Coumbaras J, Raphael M, et al. Interleukin-6 production in high-grade B lymphomas: correlation with the presence of malignant immunoblasts in acquired immunodeficiency syndrome and in human immunodeficiency virus-seronegative patients. Blood. 1992;80(2):498–504.PubMedGoogle Scholar
  248. 248.
    Scala G, Quinto I, Ruocco MR, et al. Expression of an exogenous interleukin 6 gene in human Epstein Barr virus B cells confers growth advantage and in vivo tumorigenicity. J Exp Med. 1990;172(1):61–8.PubMedCrossRefGoogle Scholar
  249. 249.
    Mauray S, Fuzzati-Armentero MT, Trouillet P, et al. Epstein-Barr virus-dependent lymphoproliferative disease: critical role of IL-6. Eur J Immunol. 2000;30(7):2065–73.PubMedCrossRefGoogle Scholar
  250. 250.
    Grierson H, Purtilo DT. Epstein-Barr virus infections in males with the X-linked lymphoproliferative syndrome. Ann Intern Med. 1987;106(4):538–45.PubMedGoogle Scholar
  251. 251.
    Munz C, Moormann A. Immune escape by Epstein-Barr virus associated malignancies. Semin Cancer Biol. 2008;18(6):381–7.PubMedCrossRefGoogle Scholar
  252. 252.
    Hjalgrim H, Smedby KE, Rostgaard K, et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 2007;67(5):2382–8.PubMedCrossRefGoogle Scholar
  253. 253.
    Quintanilla-Martinez L, Kumar S, Fend F, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood. 2000;96(2):443–51.PubMedGoogle Scholar
  254. 254.
    Jaffe ES. Pathologic and clinical spectrum of post-thymic T-cell malignancies. Cancer Invest. 1984;2(5):413–26.PubMedCrossRefGoogle Scholar
  255. 255.
    Lipford Jr EH, Margolick JB, Longo DL, Fauci AS, Jaffe ES. Angiocentric immunoproliferative lesions: a clinicopathologic spectrum of post-thymic T-cell proliferations. Blood. 1988;72(5): 1674–81.PubMedGoogle Scholar
  256. 256.
    Longo DL, DeVita Jr VT, Jaffe ES. Lymphocytic lymphomas. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer. Principles & practice of oncology. Philadelphia: JB Lippincott Co.; 1993.Google Scholar
  257. 257.
    Wilson WH, Kingma DW, Raffeld M, Wittes RE, Jaffe ES. Association of lymphomatoid granulomatosis with Epstein-Barr viral infection of B lymphocytes and response to interferon-alpha 2b. Blood. 1996;87(11):4531–7.PubMedGoogle Scholar
  258. 258.
    Fauci AS, Haynes BF, Costa J, Katz P, Wolff SM. Lymphomatoid Granulomatosis. Prospective clinical and therapeutic experience over 10 years. N Engl J Med. 1982;306(2):68–74.PubMedCrossRefGoogle Scholar
  259. 259.
    Katzenstein AL, Peiper SC. Detection of Epstein-Barr virus genomes in lymphomatoid granulomatosis: analysis of 29 cases by the polymerase chain reaction technique. Mod Pathol. 1990;3(4):435–41.PubMedGoogle Scholar
  260. 260.
    Guinee Jr D, Jaffe E, Kingma D. Pulmonary lymphomatoid granulomatosis. Evidence for a proliferation of Epstein-Barr virus infected B-lymphocytes with a prominent T-cell component and vasculitis. Am J Surg Pathol. 1994;18(8):753–64.PubMedCrossRefGoogle Scholar
  261. 261.
    Chan JK, Ng CS, Lau WH, Lo ST. Most nasal/nasopharyngeal lymphomas are peripheral T-cell neoplasms. Am J Surg Pathol. 1987;11(6):418–29.PubMedCrossRefGoogle Scholar
  262. 262.
    Harabuchi Y, Yamanaka N, Kataura A, et al. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet. 1990;335(8682):128–30.PubMedCrossRefGoogle Scholar
  263. 263.
    Lome-Maldonado C, Canioni D, Hermine O, et al. Angio-immunoblastic T cell lymphoma (AILD-TL) rich in large B cells and associated with Epstein-Barr virus infection. A different subtype of AILD-TL? Leukemia. 2002;16(10):2134–41.PubMedCrossRefGoogle Scholar
  264. 264.
    Quintanilla-Martinez L, Fend F, Moguel LR, et al. Peripheral T-cell lymphoma with Reed-Sternberg-like cells of B-cell phenotype and genotype associated with Epstein-Barr virus infection. Am J Surg Pathol. 1999;23(10):1233–40.PubMedCrossRefGoogle Scholar
  265. 265.
    Weiss LM, Jaffe ES, Liu XF, Chen YY, Shibata D, Medeiros LJ. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood. 1992;79(7):1789–95.PubMedGoogle Scholar
  266. 266.
    Abruzzo LV, Schmidt K, Weiss LM, et al. B-cell lymphoma after angioimmunoblastic lymphadenopathy: a case with oligoclonal gene rearrangements associated with Epstein-Barr virus. Blood. 1993;82(1):241–6.PubMedGoogle Scholar
  267. 267.
    Lipford EH, Smith HR, Pittaluga S, Jaffe ES, Steinberg AD, Cossman J. Clonality of angioimmunoblastic lymphadenopathy and implications for its evolution to malignant lymphoma. J Clin Invest. 1987;79(2):637–42.PubMedCrossRefGoogle Scholar
  268. 268.
    Anagnostopoulos I, Hummel M, Finn T, et al. Heterogeneous Epstein-Barr virus infection patterns in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood. 1992;80(7):1804–12.PubMedGoogle Scholar
  269. 269.
    Bashir RM, Harris NL, Hochberg FH, Singer RM. Detection of Epstein-Barr virus in CNS lymphomas by in-situ hybridization. Neurology. 1989;39(6):813–7.PubMedCrossRefGoogle Scholar
  270. 270.
    Hochberg FH, Miller G, Schooley RT, Hirsch MS, Feorino P, Henle W. Central-nervous-system lymphoma related to Epstein-Barr virus. N Engl J Med. 1983;309(13):745–8.PubMedCrossRefGoogle Scholar
  271. 271.
    Kitai R, Matsuda K, Adachi E, et al. Epstein-Barr virus-associated primary central nervous system lymphoma in the Japanese population. Neurol Med Chir (Tokyo). 2010;50(2):114–8.CrossRefGoogle Scholar
  272. 272.
    Lam KY, Lo CY, Kwong DL, Lee J, Srivastava G. Malignant lymphoma of the thyroid. A 30-year clinicopathologic experience and an evaluation of the presence of Epstein-Barr virus. Am J Clin Pathol. 1999;112(2):263–70.PubMedGoogle Scholar
  273. 273.
    Chapel F, Fabiani B, Davi F, et al. Epstein-Barr virus and gastric carcinoma in Western patients: comparison of pathological parameters and p53 expression in EBV-positive and negative tumours. Histopathology. 2000;36(3):252–61.PubMedCrossRefGoogle Scholar
  274. 274.
    DiGiuseppe JA, Wu TC, Corio RL. Analysis of Epstein-Barr virus-encoded small RNA 1 expression in benign lymphoepithelial salivary gland lesions. Mod Pathol. 1994;7(5):555–9.PubMedGoogle Scholar
  275. 275.
    Feinmesser R, Miyazaki I, Cheung R, Freeman JL, Noyek AM, Dosch HM. Diagnosis of nasopharyngeal carcinoma by DNA amplification of tissue obtained by fine-needle aspiration. N Engl J Med. 1992;326(1):17–21.PubMedCrossRefGoogle Scholar
  276. 276.
    Hong T, Shimada Y, Kano M, et al. The Epstein-Barr virus is rarely associated with esophageal cancer. Int J Mol Med. 2000;5(4):363–8.PubMedGoogle Scholar
  277. 277.
    Imai S, Koizumi S, Sugiura M, et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA. 1994;91(19):9131–5.PubMedCrossRefGoogle Scholar
  278. 278.
    Kumar S, Fend F, Quintanilla-Martinez L, et al. Epstein-Barr virus-positive primary gastrointestinal Hodgkin’s disease: association with inflammatory bowel disease and immunosuppression. Am J Surg Pathol. 2000;24(1):66–73.PubMedCrossRefGoogle Scholar
  279. 279.
    Leyvraz S, Henle W, Chahinian AP, et al. Association of Epstein-Barr virus with thymic carcinoma. N Engl J Med. 1985;312(20): 1296–9.PubMedCrossRefGoogle Scholar
  280. 280.
    Osato T, Imai S. Epstein-Barr virus and gastric carcinoma. Semin Cancer Biol. 1996;7(4):175–82.PubMedCrossRefGoogle Scholar
  281. 281.
    Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med. 1995;333(11):693–8.PubMedCrossRefGoogle Scholar
  282. 282.
    Patton DF, Ribeiro RC, Jenkins JJ, Sixbey JW. Thymic carcinoma with a defective Epstein-Barr virus encoding the BZLF1 trans-activator. J Infect Dis. 1994;170(1):7–12.PubMedCrossRefGoogle Scholar
  283. 283.
    Sashiyama H, Nozawa A, Kimura M, et al. Case report: A case of lymphoepithelioma-like carcinoma of the oesophagus and review of the literature. J Gastroenterol Hepatol. 1999;14(6):534–9.PubMedCrossRefGoogle Scholar
  284. 284.
    Wong MP, Chung LP, Yuen ST, et al. In situ detection of Epstein-Barr virus in non-small cell lung carcinomas. J Pathol. 1995;177(3):233–40.PubMedCrossRefGoogle Scholar
  285. 285.
    Bonnet M, Guinebretiere JM, Kremmer E, et al. Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst. 1999;91(16):1376–81.PubMedCrossRefGoogle Scholar
  286. 286.
    Brink AA, van Den Brule AJ, van Diest P, Meijer CJ. Re: detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst. 2000;92(8):655–6. author reply 656.PubMedCrossRefGoogle Scholar
  287. 287.
    Glaser SL, Ambinder RF, DiGiuseppe JA, Horn-Ross PL, Hsu JL. Absence of Epstein-Barr virus EBER-1 transcripts in an epidemiologically diverse group of breast cancers. Int J Cancer. 1998;75(4):555–8.PubMedCrossRefGoogle Scholar
  288. 288.
    Magrath I, Bhatia K. Breast cancer: a new Epstein-Barr virus-associated disease? J Natl Cancer Inst. 1999;91(16):1349–50.PubMedCrossRefGoogle Scholar
  289. 289.
    Kaufman D, Longo DL. Hodgkin’s disease. Crit Rev Oncol Hematol. 1992;13(2):135–87.PubMedCrossRefGoogle Scholar
  290. 290.
    Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21.PubMedCrossRefGoogle Scholar
  291. 291.
    Glaser SL, Keegan TH, Clarke CA, et al. Exposure to childhood infections and risk of Epstein-Barr virus-defined Hodgkin’s lymphoma in women. Int J Cancer. 2005;115(4):599–605.PubMedCrossRefGoogle Scholar
  292. 292.
    Mueller N. Overview of the epidemiology of malignancy in immune deficiency. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S5–10.PubMedGoogle Scholar
  293. 293.
    Herbst H, Dallenbach F, Hummel M, et al. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Sci USA. 1991;88(11):4766–70.PubMedCrossRefGoogle Scholar
  294. 294.
    Uccini S, Monardo F, Ruco LP, et al. High frequency of Epstein-Barr virus genome in HIV-positive patients with Hodgkin’s disease. Lancet. 1989;1(8652):1458.PubMedCrossRefGoogle Scholar
  295. 295.
    Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320(8):502–6.PubMedCrossRefGoogle Scholar
  296. 296.
    Nerurkar AY, Vijayan P, Srinivas V, et al. Discrepancies in Epstein-Barr virus association at presentation and relapse of classical Hodgkin’s disease: impact on pathogenesis. Ann Oncol. 2000;11(4):475–8.PubMedCrossRefGoogle Scholar
  297. 297.
    Naresh KN, Johnson J, Srinivas V, et al. Epstein-Barr virus association in classical Hodgkin’s disease provides survival advantage to patients and correlates with higher expression of proliferation markers in Reed-Sternberg cells. Ann Oncol. 2000;11(1):91–6.PubMedCrossRefGoogle Scholar
  298. 298.
    Liu TY, Wu SJ, Huang MH, et al. EBV-positive Hodgkin lymphoma is associated with suppression of p21cip1/waf1 and a worse prognosis. Mol Cancer. 2010;9:32.PubMedCrossRefGoogle Scholar
  299. 299.
    Dolcetti R, Boiocchi M. Epstein-Barr virus in the pathogenesis of Hodgkin’s disease. Biomed Pharmacother. 1998;52(1):13–25.PubMedCrossRefGoogle Scholar
  300. 300.
    Herbst H, Foss HD, Samol J, et al. Frequent expression of interleukin-10 by Epstein-Barr virus-harboring tumor cells of Hodgkin’s disease. Blood. 1996;87(7):2918–29.PubMedGoogle Scholar
  301. 301.
    Jarrett RF, MacKenzie J. Epstein-Barr virus and other candidate viruses in the pathogenesis of Hodgkin’s disease. Semin Hematol. 1999;36(3):260–9.PubMedGoogle Scholar
  302. 302.
    Preciado MV, De Matteo E, Diez B, Menarguez J, Grinstein S. Presence of Epstein-Barr virus and strain type assignment in Argentine childhood Hodgkin’s disease. Blood. 1995;86(10):3922–9.PubMedGoogle Scholar
  303. 303.
    Akanmu AS. AIDS-associated malignancies. Afr J Med Med Sci. 2006;35(Suppl):57–70.PubMedGoogle Scholar
  304. 304.
    Gerard L, Galicier L, Boulanger E, et al. Improved survival in HIV-related Hodgkin’s lymphoma since the introduction of highly active antiretroviral therapy. AIDS. 2003;17(1):81–7.PubMedCrossRefGoogle Scholar
  305. 305.
    Burgi A, Brodine S, Wegner S, et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer. 2005;104(7): 1505–11.PubMedCrossRefGoogle Scholar
  306. 306.
    Ziegler JL, Beckstead JA, Volberding PA, et al. Non-Hodgkin’s lymphoma in 90 homosexual men. Relation to generalized lymphadenopathy and the acquired immunodeficiency syndrome. N Engl J Med. 1984;311(9):565–70.PubMedCrossRefGoogle Scholar
  307. 307.
    Knowles DM, Chamulak GA, Subar M, et al. Lymphoid neoplasia associated with the acquired immunodeficiency syndrome (AIDS). The New York University Medical Center experience with 105 patients (1981–1986). Ann Intern Med. 1988;108(5):744–53.PubMedGoogle Scholar
  308. 308.
    Meyer PR, Yanagihara ET, Parker JW, Lukes RJ. A distinctive follicular hyperplasia in the acquired immune deficiency syndrome (AIDS) and the AIDS related complex. A pre-lymphomatous state for B cell lymphomas? Hematol Oncol. 1984;2(4): 319–47.PubMedGoogle Scholar
  309. 309.
    Levine AM, Gill PS, Meyer PR. Natural history of persistent, generalized lymphadenopathy in gay men: Risk of lymphoma (NHL) and factors associated with development of lymphoma. Blood. 1986;68:130a.Google Scholar
  310. 310.
    Knowles DM. Etiology and pathogenesis of AIDS-related non-Hodgkin’s lymphoma. Hematol Oncol Clin North Am. 1996;10(5):1081–109.PubMedCrossRefGoogle Scholar
  311. 311.
    Ziegler JL, Drew WL, Miner RC, et al. Outbreak of Burkitt’s-like lymphoma in homosexual men. Lancet. 1982;2(8299):631–3.PubMedCrossRefGoogle Scholar
  312. 312.
    Doll DC, List AF. Burkitt’s lymphoma in a homosexual. Lancet. 1982;1(8279):1026–7.PubMedCrossRefGoogle Scholar
  313. 313.
    Levine AM, Meyer PR, Begandy MK, et al. Development of B-cell lymphoma in homosexual me. Clinical and immunologic findings. Ann Intern Med. 1984;100(1):7–13.PubMedGoogle Scholar
  314. 314.
    Ioachim HL, Cooper MC, Hellman GC. Lymphomas in men at high risk for acquired immune deficiency syndrome (AIDS). A study of 21 cases. Cancer. 1985;56(12):2831–42.PubMedCrossRefGoogle Scholar
  315. 315.
    Dancis A, Odajnk C, Krigel RL. Association of Hodgkin’s and non-Hodgkin’s lymphoma and the acquired immunodeficiency syndrome (AIDS). Proc Am Soc Oncol. 1984;3:61.a.Google Scholar
  316. 316.
    Centers for Disease Control. Revision of the case definition of acquired immunodeficiency syndrome for national reporting–United States. MMWR Morb Mortal Wkly Rep. 1985;34(25): 373–5.Google Scholar
  317. 317.
    Centers for Disease Control. Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome for national reporting – United States. MMWR Morb Mortal Wkly Rep. 1987;36 Suppl 25:1–15.Google Scholar
  318. 318.
    Centers for Disease Control. Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morb Mortal Wkly Rep. 1992;41(RR-17):1–19.Google Scholar
  319. 319.
    Said JW. Human immunodeficiency virus-related lymphoid proliferations. Semin Diagn Pathol. 1997;14(1):48–53.PubMedGoogle Scholar
  320. 320.
    Levine AM, Sadeghi S, Espina B, Tulpule A, Nathwani B. Characteristics of indolent non-Hodgkin lymphoma in patients with type 1 human immunodeficiency virus infection. Cancer. 2002;94(5):1500–6.PubMedCrossRefGoogle Scholar
  321. 321.
    Dal Maso L, Franceschi S. Epidemiology of non-Hodgkin lymphomas and other haemolymphopoietic neoplasms in people with AIDS. Lancet Oncol. 2003;4(2):110–9.PubMedCrossRefGoogle Scholar
  322. 322.
    Beral V, Peterman T, Berkelman R, Jaffe H. AIDS-associated non-Hodgkin lymphoma. Lancet. 1991;337(8745):805–9.PubMedCrossRefGoogle Scholar
  323. 323.
    Hamilton-Dutoit SJ, Pallesen G, Karkov J, Skinhoj P, Franzmann MB, Pedersen C. Identification of EBV-DNA in tumour cells of AIDS-related lymphomas by in-situ hybridisation. Lancet. 1989;1(8637):554–2.PubMedCrossRefGoogle Scholar
  324. 324.
    Rabkin CS, Sei S. Susceptibility genes for AIDS and AIDS-related lymphoma. Curr Top Microbiol Immunol. 1999;246:111–4. discussion 115.PubMedCrossRefGoogle Scholar
  325. 325.
    Wilkes MS, Fortin AH, Felix JC, Godwin TA, Thompson WG. Value of necropsy in acquired immunodeficiency syndrome. Lancet. 1988;2(8602):85–8.PubMedCrossRefGoogle Scholar
  326. 326.
    Ridolfo AL, Santambrogio S, Mainini F, et al. High frequency of non-Hodgkin’s lymphoma in patients with HIV-associated Kaposi’s sarcoma. AIDS. 1996;10(2):181–5.PubMedCrossRefGoogle Scholar
  327. 327.
    Pedersen C, Gerstoft J, Tauris P, et al. Trends in survival of Danish AIDS patients from 1981 to 1989. AIDS. 1990;4(11):1111–6.PubMedCrossRefGoogle Scholar
  328. 328.
    Kaplan LD, Abrams DI, Feigal E, et al. AIDS-associated non-Hodgkin’s lymphoma in San Francisco. JAMA. 1989;261(5): 719–24.PubMedCrossRefGoogle Scholar
  329. 329.
    Gisselbrecht C, Oksenhendler E, Tirelli U, et al. Human immunodeficiency virus-related lymphoma treatment with intensive combination chemotherapy. French-Italian Cooperative Group. Am J Med. 1993;95(2):188–96.PubMedCrossRefGoogle Scholar
  330. 330.
    Rabkin CS, Hilgartner MW, Hedberg KW, et al. Incidence of lymphomas and other cancers in HIV-infected and HIV-uninfected patients with hemophilia. JAMA. 1992;267(8):1090–4.PubMedCrossRefGoogle Scholar
  331. 331.
    Tulpule A, Levine A. AIDS-related lymphoma. Blood Rev. 1999;13(3):147–50.PubMedCrossRefGoogle Scholar
  332. 332.
    Evison J, Jost J, Ledergerber B, Jost L, Strasser F, Weber R. HIV-associated non-Hodgkin’s lymphoma: highly active antiretroviral therapy improves remission rate of chemotherapy. AIDS. 1999;13(6):732–4.PubMedCrossRefGoogle Scholar
  333. 333.
    Pluda JM, Venzon DJ, Tosato G, et al. Parameters affecting the development of non-Hodgkin’s lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J Clin Oncol. 1993;11(6):1099–107.PubMedGoogle Scholar
  334. 334.
    Centers for Disease Control. Opportunistic non-Hodgkin’s lymphomas among severely immunocompromised HIV-infected patients surviving for prolonged periods on antiretroviral therapy–United States. JAMA. 1991;266(12):1620–1.CrossRefGoogle Scholar
  335. 335.
    Hamilton-Dutoit SJ, Pallesen G, Franzmann M, et al. AIDS-related lymphoma. Histopathology, immunophenotype, and association with Epstein-Barr virus as demonstrated by in situ nucleic acid hybridization. Am J Pathol. 1991;138(1):149–63.PubMedGoogle Scholar
  336. 336.
    Yarchoan R, Venzon DJ, Pluda JM, et al. CD4 count and the risk for death in patients infected with HIV receiving antiretroviral therapy. Ann Intern Med. 1991;115(3):184–9.PubMedGoogle Scholar
  337. 337.
    Levine AM, Bernstein L, Sullivan-Halley J, Shibata D, Mahterian SB, Nathwani BN. Role of zidovudine antiretroviral therapy in the pathogenesis of acquired immunodeficiency syndrome-related lymphoma. Blood. 1995;86(12):4612–6.PubMedGoogle Scholar
  338. 338.
    Cote TR, Biggar RJ. Does zidovudine cause non-Hodgkin’s lymphoma? AIDS. 1995;9(4):404–5.PubMedGoogle Scholar
  339. 339.
    Grulich AE, Wan X, Law MG, et al. B-cell stimulation and prolonged immune deficiency are risk factors for non-Hodgkin’s lymphoma in people with AIDS. AIDS. 2000;14(2):133–40.PubMedCrossRefGoogle Scholar
  340. 340.
    Schapiro JM, Winters MA, Stewart F, et al. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med. 1996;124(12):1039–50.PubMedGoogle Scholar
  341. 341.
    Deeks SG, Smith M, Holodniy M, Kahn JO. HIV-1 protease inhibitors. A review for clinicians. JAMA. 1997;277(2):145–53.PubMedCrossRefGoogle Scholar
  342. 342.
    Saravolatz LD, Winslow DL, Collins G, et al. Zidovudine alone or in combination with didanosine or zalcitabine in HIV-infected patients with the acquired immunodeficiency syndrome or fewer than 200 CD4 cells per cubic millimeter. Investigators for the Terry Beirn Community Programs for Clinical Research on AIDS. N Engl J Med. 1996;335(15):1099–106.PubMedCrossRefGoogle Scholar
  343. 343.
    Saag MS, Kilby JM. HIV-1 and HAART: a time to cure, a time to kill. Nat Med. 1999;5(6):609–11.PubMedCrossRefGoogle Scholar
  344. 344.
    Hazenberg MD, Stuart JW, Otto SA, et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood. 2000;95(1):249–55.PubMedGoogle Scholar
  345. 345.
    Hammer SM, Katzenstein DA, Hughes MD, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team. N Engl J Med. 1996;335(15):1081–90.PubMedCrossRefGoogle Scholar
  346. 346.
    Feigal EG. AIDS-associated malignancies: research perspectives. Biochim Biophys Acta. 1999;1423(1):C1–9.PubMedGoogle Scholar
  347. 347.
    D’Aquila RT, Hughes MD, Johnson VA, et al. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. A randomized, double-blind, placebo-controlled trial. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators. Ann Intern Med. 1996;124(12):1019–30.PubMedGoogle Scholar
  348. 348.
    Bartlett JA, Benoit SL, Johnson VA, et al. Lamivudine plus zidovudine compared with zalcitabine plus zidovudine in patients with HIV infection. A randomized, double-blind, placebo-controlled trial. North American HIV Working Party. Ann Intern Med. 1996;125(3):161–72.PubMedGoogle Scholar
  349. 349.
    Katzenstein DA, Hammer SM, Hughes MD, et al. The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. AIDS Clinical Trials Group Study 175 Virology Study Team. N Engl J Med. 1996;335(15):1091–8.PubMedCrossRefGoogle Scholar
  350. 350.
    Moore RD, Chaisson RE. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS. 1999;13(14):1933–42.PubMedCrossRefGoogle Scholar
  351. 351.
    Mocroft A, Sabin CA, Youle M, et al. Changes in AIDS-defining illnesses in a London Clinic, 1987–1998. J Acquir Immune Defic Syndr. 1999;21(5):401–7.PubMedCrossRefGoogle Scholar
  352. 352.
    Lederman MM, Valdez H. Immune restoration with antiretroviral therapies: implications for clinical management. JAMA. 2000;284(2):223–8.PubMedCrossRefGoogle Scholar
  353. 353.
    Sparano JA, Anand K, Desai J, Mitnick RJ, Kalkut GE, Hanau LH. Effect of highly active antiretroviral therapy on the incidence of HIV-associated malignancies at an urban medical center. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S18–22.PubMedGoogle Scholar
  354. 354.
    Masliah E, DeTeresa RM, Mallory ME, Hansen LA. Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS. 2000;14(1):69–74.PubMedCrossRefGoogle Scholar
  355. 355.
    Ledergerber B, Telenti A, Egger M. Risk of HIV related Kaposi’s sarcoma and non-Hodgkin’s lymphoma with potent antiretroviral therapy: prospective cohort study. Swiss HIV Cohort Study. BMJ. 1999;319(7201):23–4.PubMedCrossRefGoogle Scholar
  356. 356.
    Ledergerber B, Egger M, Erard V, et al. AIDS-related opportunistic illnesses occurring after initiation of potent antiretroviral therapy: the Swiss HIV Cohort Study. JAMA. 1999;282(23):2220–6.PubMedCrossRefGoogle Scholar
  357. 357.
    Jones JL, Hanson DL, Dworkin MS, Ward JW, Jaffe HW. Effect of antiretroviral therapy on recent trends in selected cancers among HIV-infected persons Adult/Adolescent Spectrum of HIV Disease Project Group. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S11–7.PubMedGoogle Scholar
  358. 358.
    Jacobson LP, Yamashita TE, Detels R, et al. Impact of potent antiretroviral therapy on the incidence of Kaposi’s sarcoma and non-Hodgkin’s lymphomas among HIV-1-infected individuals Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S34–41.PubMedGoogle Scholar
  359. 359.
    International Collaboration on HIV and Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst. 2000;92(22):1823–30.CrossRefGoogle Scholar
  360. 360.
    Grulich AE. AIDS-associated non-Hodgkin’s lymphoma in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S27–30.PubMedGoogle Scholar
  361. 361.
    Buchbinder SP, Holmberg SD, Scheer S, Colfax G, O’Malley P, Vittinghoff E. Combination antiretroviral therapy and incidence of AIDS-related malignancies. J Acquir Immune Defic Syndr. 1999;21 Suppl 1:S23–6.PubMedGoogle Scholar
  362. 362.
    Kirk O, Pedersen C, Cozzi-Lepri A, et al. Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood. 2001;98(12):3406–12.PubMedCrossRefGoogle Scholar
  363. 363.
    Polesel J, Clifford GM, Rickenbach M, et al. Non-Hodgkin ­lymphoma incidence in the Swiss HIV Cohort Study before and after highly active antiretroviral therapy. AIDS. 2008;22(2): 301–6.PubMedCrossRefGoogle Scholar
  364. 364.
    Serraino D, De Paoli A, Zucchetto A, Pennazza S, Bruzzone S, Spina M, De Paoli P, Rezza G, Dal Maso L, Suligoi B. The impact of Kaposi sarcoma and non-Hodgkin lymphoma on mortality of people with AIDS in the highly active antiretroviral therapies era. Cancer Epidemiol. 2010;34(3):257–61.PubMedCrossRefGoogle Scholar
  365. 365.
    Hogan CM, Hammer SM. Host determinants in HIV infection and disease. Part 2: genetic factors and implications for antiretroviral therapeutics. Ann Intern Med. 2001;134(10):978–96.PubMedGoogle Scholar
  366. 366.
    Lowenthal DA, Straus DJ, Campbell SW, Gold JW, Clarkson BD, Koziner B. AIDS-related lymphoid neoplasia. The memorial hospital experience. Cancer. 1988;61(11):2325–37.PubMedCrossRefGoogle Scholar
  367. 367.
    Meeker TC, Shiramizu B, Kaplan L, et al. Evidence for molecular subtypes of HIV-associated lymphoma: division into peripheral monoclonal, polyclonal and central nervous system lymphoma. AIDS. 1991;5(6):669–74.PubMedCrossRefGoogle Scholar
  368. 368.
    Rabkin CS, Biggar RJ, Horm JW. Increasing incidence of cancers associated with the human immunodeficiency virus epidemic. Int J Cancer. 1991;47(5):692–6.PubMedCrossRefGoogle Scholar
  369. 369.
    Walsh C, Wernz JC, Levine A, et al. Phase I trial of m-BACOD and granulocyte macrophage colony stimulating factor in HIV-associated non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr. 1993;6(3):265–71.PubMedGoogle Scholar
  370. 370.
    Raphael M, Gentilhomme O, Tulliez M, Byron PA, Diebold J. Histopathologic features of high-grade non-Hodgkin’s lymphomas in acquired immunodeficiency syndrome. The French Study Group of Pathology for Human Immunodeficiency Virus-Associated Tumors. Arch Pathol Lab Med. 1991;115(1):15–20.PubMedGoogle Scholar
  371. 371.
    Levine AM, Gill PS, Meyer PR, et al. Retrovirus and malignant lymphoma in homosexual men. JAMA. 1985;254(14):1921–5.PubMedCrossRefGoogle Scholar
  372. 372.
    Kalter SP, Riggs SA, Cabanillas F, et al. Aggressive non-Hodgkin’s lymphomas in immunocompromised homosexual males. Blood. 1985;66(3):655–9.PubMedGoogle Scholar
  373. 373.
    Carbone A, Tirelli U, Vaccher E, et al. A clinicopathologic study of lymphoid neoplasias associated with human immunodeficiency virus infection in Italy. Cancer. 1991;68(4):842–52.PubMedCrossRefGoogle Scholar
  374. 374.
    Boyle MJ, Swanson CE, Turner JJ, et al. Definition of two distinct types of AIDS-associated non-Hodgkin lymphoma. Br J Haematol. 1990;76(4):506–12.PubMedCrossRefGoogle Scholar
  375. 375.
    Bermudez MA, Grant KM, Rodvien R, Mendes F. Non-Hodgkin’s lymphoma in a population with or at risk for acquired immunodeficiency syndrome: indications for intensive chemotherapy. Am J Med. 1989;86(1):71–6.PubMedCrossRefGoogle Scholar
  376. 376.
    Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5): 1361–92.PubMedGoogle Scholar
  377. 377.
    Levine AM, Wernz JC, Kaplan L, et al. Low-dose chemotherapy with central nervous system prophylaxis and zidovudine maintenance in AIDS-related lymphoma. A prospective multi-institutional trial. JAMA. 1991;266(1):84–8.PubMedCrossRefGoogle Scholar
  378. 378.
    Gill PS, Levine AM, Krailo M, et al. AIDS-related malignant lymphoma: results of prospective treatment trials. J Clin Oncol. 1987;5(9):1322–8.PubMedGoogle Scholar
  379. 379.
    Carbone A, Gloghini A, Volpe R, Boiocchi M, Tirelli U. High frequency of Epstein-Barr virus latent membrane protein-1 expression in acquired immunodeficiency syndrome-related Ki-1 (CD30)-positive anaplastic large-cell lymphomas. Italian Cooperative Group on AIDS and Tumors. Am J Clin Pathol. 1994;101(6):768–72.PubMedGoogle Scholar
  380. 380.
    Biggar RJ, Frisch M, Goedert JJ. Risk of cancer in children with AIDS. AIDS-Cancer Match Registry Study Group. JAMA. 2000;284(2):205–9.PubMedCrossRefGoogle Scholar
  381. 381.
    Gonzalez-Clemente JM, Ribera JM, Campo E, Bosch X, Montserrat E, Grau JM. Ki-1+ anaplastic large-cell lymphoma of T-cell origin in an HIV-infected patient. AIDS. 1991;5(6):751–5.PubMedCrossRefGoogle Scholar
  382. 382.
    Carbone A, Gloghini A, Zanette I, Canal B, Volpe R. Demonstration of Epstein-Barr viral genomes by in situ hybridization in acquired immune deficiency syndrome-related high grade and anaplastic large cell CD30+ lymphomas. Am J Clin Pathol. 1993;99(3): 289–97.PubMedGoogle Scholar
  383. 383.
    Jambusaria A, Shafer D, Wu H, Al-Saleem T, Perlis C. Cutaneous plasmablastic lymphoma. J Am Acad Dermatol. 2008;58(4):676–8.PubMedCrossRefGoogle Scholar
  384. 384.
    Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.PubMedCrossRefGoogle Scholar
  385. 385.
    Hystad ME, Myklebust JH, Bo TH, et al. Characterization of early stages of human B cell development by gene expression profiling. J Immunol. 2007;179(6):3662–71.PubMedGoogle Scholar
  386. 386.
    Sausville EA. T-cell leukemia-lymphoma and mycosis fungoides. Curr Opin Oncol. 1992;4(5):829–39.PubMedCrossRefGoogle Scholar
  387. 387.
    Mantina H, Wiggill TM, Carmona S, Perner Y, Stevens WS. Characterization of Lymphomas in a high prevalence HIV setting. J Acquir Immune Defic Syndr. 2010;53(5):656–60.PubMedGoogle Scholar
  388. 388.
    Castillo J, Perez K, Milani C, Dezube BJ, Pantanowitz L. Peripheral T-cell lymphomas in HIV-infected individuals: a comprehensive review. J HIV Ther. 2009;14(2):34–40.PubMedGoogle Scholar
  389. 389.
    Nahass GT, Kraffert CA, Penneys NS. Cutaneous T-cell lymphoma associated with the acquired immunodeficiency syndrome. Arch Dermatol. 1991;127(7):1020–2.PubMedCrossRefGoogle Scholar
  390. 390.
    Crane GA, Variakojis D, Rosen ST, Sands AM, Roenigk Jr HH. Cutaneous T-cell lymphoma in patients with human immunodeficiency virus infection. Arch Dermatol. 1991;127(7): 989–94.PubMedCrossRefGoogle Scholar
  391. 391.
    Shibata D, Brynes RK, Rabinowitz A, et al. Human T-cell ­lymphotropic virus type I (HTLV-I)-associated adult T-cell ­leukemia-lymphoma in a patient infected with human immunodeficiency virus type 1 (HIV-1). Ann Intern Med. 1989; 111(11):871–5.PubMedGoogle Scholar
  392. 392.
    Parker SC, Fenton DA, McGibbon DH. Homme rouge and the acquired immunodeficiency syndrome. N Engl J Med. 1989;321(13):906–7.PubMedGoogle Scholar
  393. 393.
    Kelsey RC, Saker A, Morgan M. Cardiac lymphoma in a patient with AIDS. Ann Intern Med. 1991;115(5):370–1.PubMedGoogle Scholar
  394. 394.
    Burkes RL, Meyer PR, Gill PS, Parker JW, Rasheed S, Levine AM. Rectal lymphoma in homosexual men. Arch Intern Med. 1986;146(5):913–5.PubMedCrossRefGoogle Scholar
  395. 395.
    Lee CYS, Chun K, Shimonishi JJ. Non-Hodgkin’s lymphoma of the oral cavity associated with HIV infection. Hawil Dental J. 1994; June:6–11.Google Scholar
  396. 396.
    Woodman R, Shin K, Pineo G. Primary non-Hodgkin’s lymphoma of the brain. A review. Medicine (Baltimore). 1985;64(6): 425–30.CrossRefGoogle Scholar
  397. 397.
    Henry JM, Heffner Jr RR, Dillard SH, Earle KM, Davis RL. Primary malignant lymphomas of the central nervous system. Cancer. 1974;34(4):1293–302.PubMedCrossRefGoogle Scholar
  398. 398.
    Eby NL, Grufferman S, Flannelly CM, Schold Jr SC, Vogel FS, Burger PC. Increasing incidence of primary brain lymphoma in the US. Cancer. 1988;62(11):2461–5.PubMedCrossRefGoogle Scholar
  399. 399.
    Forsyth PA, DeAngelis LM. Biology and management of AIDS-associated primary CNS lymphomas. Hematol Oncol Clin North Am. 1996;10(5):1125–34.PubMedCrossRefGoogle Scholar
  400. 400.
    MacMahon EM, Glass JD, Hayward SD, et al. Epstein-Barr virus in AIDS-related primary central nervous system lymphoma. Lancet. 1991;338(8773):969–73.PubMedCrossRefGoogle Scholar
  401. 401.
    So YT, Beckstead JH, Davis RL. Primary central nervous system lymphoma in acquired immune deficiency syndrome: a clinical and pathological study. Ann Neurol. 1986;20(5):566–72.PubMedCrossRefGoogle Scholar
  402. 402.
    Gill PS, Levine AM, Meyer PR, et al. Primary central nervous system lymphoma in homosexual men. Clinical, immunologic, and pathologic features. Am J Med. 1985;78(5):742–8.PubMedCrossRefGoogle Scholar
  403. 403.
    Formenti SC, Gill PS, Lean E, et al. Primary central nervous system lymphoma in AIDS. Results of radiation therapy. Cancer. 1989;63(6):1101–7.PubMedCrossRefGoogle Scholar
  404. 404.
    Baumgartner JE, Rachlin JR, Beckstead JH, et al. Primary central nervous system lymphomas: natural history and response to radiation therapy in 55 patients with acquired immunodeficiency syndrome. J Neurosurg. 1990;73(2):206–11.PubMedCrossRefGoogle Scholar
  405. 405.
    Snider WD, Simpson DM, Nielsen S, Gold JW, Metroka CE, Posner JB. Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol. 1983;14(4):403–18.PubMedCrossRefGoogle Scholar
  406. 406.
    Diamond C, Taylor TH, Aboumrad T, Anton-Culver H. Changes in acquired immunodeficiency syndrome-related non-Hodgkin lymphoma in the era of highly active antiretroviral therapy: incidence, presentation, treatment, and survival. Cancer. 2006;106(1):128–35.PubMedCrossRefGoogle Scholar
  407. 407.
    Snider WD, Simpson DM, Aronyk KE, Nielsen SL. Primary lymphoma of the nervous system associated with acquired immune-deficiency syndrome. N Engl J Med. 1983;308(1):45.PubMedGoogle Scholar
  408. 408.
    Sneller MC, Strober W, Eisenstein E, Jaffe JS, Cunningham-Rundles C. NIH conference. New insights into common variable immunodeficiency. Ann Intern Med. 1993;118(9):720–30.PubMedGoogle Scholar
  409. 409.
    Enting RH, Esselink RA, Portegies P. Lymphomatous meningitis in AIDS-related systemic non-Hodgkin’s lymphoma: a report of eight cases. J Neurol Neurosurg Psychiatry. 1994;57(2):150–3.PubMedCrossRefGoogle Scholar
  410. 410.
    Nakhleh RE, Manivel JC, Copenhaver CM, Sung JH, Strickler JG. In situ hybridization for the detection of Epstein-Barr virus in central nervous system lymphomas. Cancer. 1991;67(2):444–8.PubMedCrossRefGoogle Scholar
  411. 411.
    Bashir RM, Hochberg FH, Harris NL, Purtilo D. Variable expression of Epstein-Barr virus genome as demonstrated by in situ hybridization in central nervous system lymphomas in immunocompromised patients. Mod Pathol. 1990;3(4):429–34.PubMedGoogle Scholar
  412. 412.
    Nuckols JD, Liu K, Burchette JL, McLendon RE, Traweek ST. Primary central nervous system lymphomas: a 30-year experience at a single institution. Mod Pathol. 1999;12(12):1167–73.PubMedGoogle Scholar
  413. 413.
    Subar M, Neri A, Inghirami G, Knowles DM, Dalla-Favera R. Frequent c-myc oncogene activation and infrequent presence of Epstein-Barr virus genome in AIDS-associated lymphoma. Blood. 1988;72(2):667–71.PubMedGoogle Scholar
  414. 414.
    Walts AE, Shintaku IP, Said JW. Diagnosis of malignant lymphoma in effusions from patients with AIDS by gene rearrangement. Am J Clin Pathol. 1990;94(2):170–5.PubMedGoogle Scholar
  415. 415.
    Knowles DM, Inghirami G, Ubriaco A, Dalla-Favera R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood. 1989;73(3):792–9.PubMedGoogle Scholar
  416. 416.
    Nador RG, Cesarman E, Knowles DM, Said JW. Herpes-like DNA sequences in a body-cavity-based lymphoma in an HIV-negative patient. N Engl J Med. 1995;333(14):943.PubMedCrossRefGoogle Scholar
  417. 417.
    Simonelli C, Spina M, Cinelli R, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21(21):3948–54.PubMedCrossRefGoogle Scholar
  418. 418.
    Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. Pleural and peritoneal lymphoma among people with AIDS in the United States. J Acquir Immune Defic Syndr. 2002;29(4):418–21.PubMedGoogle Scholar
  419. 419.
    Strauchen JA, Hauser AD, Burstein D, Jimenez R, Moore PS, Chang Y. Body cavity-based malignant lymphoma containing Kaposi sarcoma-associated herpesvirus in an HIV-negative man with previous Kaposi sarcoma. Ann Intern Med. 1996;125(10):822–5.PubMedGoogle Scholar
  420. 420.
    Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88(2): 645–56.PubMedGoogle Scholar
  421. 421.
    Knowles DM, Cesarman E, Chadburn A, et al. Correlative ­morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood. 1995;85(2):552–65.PubMedGoogle Scholar
  422. 422.
    Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332(18):1186–91.PubMedCrossRefGoogle Scholar
  423. 423.
    Jones D, Ballestas ME, Kaye KM, et al. Primary-effusion lymphoma and Kaposi’s sarcoma in a cardiac-transplant recipient. N Engl J Med. 1998;339(7):444–9.PubMedCrossRefGoogle Scholar
  424. 424.
    Fassone L, Bhatia K, Gutierrez M, et al. Molecular profile of Epstein-Barr virus infection in HHV-8-positive primary effusion lymphoma. Leukemia. 2000;14(2):271–7.PubMedCrossRefGoogle Scholar
  425. 425.
    Dotti G, Fiocchi R, Motta T, et al. Primary effusion lymphoma after heart transplantation: a new entity associated with human herpesvirus-8. Leukemia. 1999;13(5):664–70.PubMedCrossRefGoogle Scholar
  426. 426.
    Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med. 1995;332(18):1181–5.PubMedCrossRefGoogle Scholar
  427. 427.
    Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266(5192):1865–9.PubMedCrossRefGoogle Scholar
  428. 428.
    Ambroziak JA, Blackbourn DJ, Herndier BG, et al. Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science. 1995;268(5210):582–3.PubMedCrossRefGoogle Scholar
  429. 429.
    Carbone A, Gloghini A. KSHV/HHV8-associated lymphomas. Br J Haematol. 2008;140(1):13–24.PubMedGoogle Scholar
  430. 430.
    Ballestas ME, Chatis PA, Kaye KM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science. 1999;284(5414):641–4.PubMedCrossRefGoogle Scholar
  431. 431.
    Judde JG, Lacoste V, Briere J, et al. Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi’s sarcoma and other diseases. J Natl Cancer Inst. 2000;92(9):729–36.PubMedCrossRefGoogle Scholar
  432. 432.
    Oksenhendler E, Clauvel JP, Jouveshomme S, Davi F, Mansour G. Complete remission of a primary effusion lymphoma with antiretroviral therapy. Am J Hematol. 1998;57(3):266.PubMedCrossRefGoogle Scholar
  433. 433.
    Ansari MQ, Dawson DB, Nador R, et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol. 1996; 105(2):221–9.PubMedGoogle Scholar
  434. 434.
    Callahan J, Pai S, Cotter M, Robertson ES. Distinct patterns of viral antigen expression in Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus coinfected body-cavity-based lymphoma cell lines: potential switches in latent gene expression due to coinfection. Virology. 1999;262(1):18–30.PubMedCrossRefGoogle Scholar
  435. 435.
    Mullaney BP, Ng VL, Herndier BG, McGrath MS, Pallavicini MG. Comparative genomic analyses of primary effusion lymphoma. Arch Pathol Lab Med. 2000;124(6):824–6.PubMedGoogle Scholar
  436. 436.
    Carbone A, Gloghini A. AIDS-related lymphomas: from pathogenesis to pathology. Br J Haematol. 2005;130(5):662–70.PubMedCrossRefGoogle Scholar
  437. 437.
    Italian Cooperative Group for AIDS-Related Tumors. Malignant lymphomas in patients with or at risk for AIDS in Italy. Italian Cooperative Group for AIDS-Related Tumors. J Natl Cancer Inst. 1988;80(11):855–60.CrossRefGoogle Scholar
  438. 438.
    Pelicci PG, Knowles 2nd DM, Arlin ZA, et al. Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. Implications for lymphomagenesis. J Exp Med. 1986;164(6):2049–60.PubMedCrossRefGoogle Scholar
  439. 439.
    Delecluse HJ, Raphael M, Magaud JP, et al. Variable morphology of human immunodeficiency virus-associated lymphomas with c-myc rearrangements. The French Study Group of Pathology for Human Immunodeficiency Virus-Associated Tumors, I. Blood. 1993;82(2):552–63.PubMedGoogle Scholar
  440. 440.
    Sklar J, Cleary ML, Thielemans K, Gralow J, Warnke R, Levy R. Biclonal B-cell lymphoma. N Engl J Med. 1984;311(1):20–7.PubMedCrossRefGoogle Scholar
  441. 441.
    Groopman JE, Sullivan JL, Mulder C, et al. Pathogenesis of B cell lymphoma in a patient with AIDS. Blood. 1986;67(3):612–5.PubMedGoogle Scholar
  442. 442.
    Whang-Peng J, Lee EC, Sieverts H, Magrath IT. Burkitt’s lymphoma in AIDS: cytogenetic study. Blood. 1984;63(4):818–22.PubMedGoogle Scholar
  443. 443.
    Petersen JM, Tubbs RR, Savage RA, et al. Small noncleaved B cell Burkitt-like lymphoma with chromosome t(8;14) translocation and Epstein-Barr virus nuclear-associated antigen in a homosexual man with acquired immune deficiency syndrome. Am J Med. 1985;78(1):141–8.PubMedCrossRefGoogle Scholar
  444. 444.
    Gaidano G, Parsa NZ, Tassi V, et al. In vitro establishment of AIDS-related lymphoma cell lines: phenotypic characterization, oncogene and tumor suppressor gene lesions, and heterogeneity in Epstein-Barr virus infection. Leukemia. 1993;7(10):1621–9.PubMedGoogle Scholar
  445. 445.
    Clark HM, Yano T, Otsuki T, Jaffe ES, Shibata D, Raffeld M. Mutations in the coding region of c-MYC in AIDS-associated and other aggressive lymphomas. Cancer Res. 1994;54(13):3383–6.PubMedGoogle Scholar
  446. 446.
    Chaganti RS, Jhanwar SC, Koziner B, Arlin Z, Mertelsmann R, Clarkson BD. Specific translocations characterize Burkitt’s-like lymphoma of homosexual men with the acquired immunodeficiency syndrome. Blood. 1983;61(6):1265–8.PubMedGoogle Scholar
  447. 447.
    Odajnyk C, Subar M, Dugan M. Clinical features and correlation with immunopathology and molecular biology in a large group of patients with AIDS-associated small cleaved cell lymphoma. Proc Am Soc Hematol. 1986;68:131a.Google Scholar
  448. 448.
    Gaidano G, Lo Coco F, Ye BH, et al. Rearrangements of the BCL-6 gene in acquired immunodeficiency syndrome-associated non-Hodgkin’s lymphoma: association with diffuse large-cell subtype. Blood. 1994;84(2):397–402.PubMedGoogle Scholar
  449. 449.
    Lo Coco F, Ye BH, Lista F, et al. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin’s lymphoma. Blood. 1994;83(7):1757–9.PubMedGoogle Scholar
  450. 450.
    Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science. 1984;224(4656):1403–6.PubMedCrossRefGoogle Scholar
  451. 451.
    Sherr CJ. Mammalian G1 cyclins. Cell. 1993;73(6):1059–65.PubMedCrossRefGoogle Scholar
  452. 452.
    Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350(6318): 512–5.PubMedCrossRefGoogle Scholar
  453. 453.
    Komatsu H, Iida S, Yamamoto K, et al. A variant chromosome translocation at 11q13 identifying PRAD1/cyclin D1 as the BCL-1 gene. Blood. 1994;84(4):1226–31.PubMedGoogle Scholar
  454. 454.
    Raffeld M, Sander CA, Yano T, Jaffe ES. Mantle cell lymphoma: an update. Leuk Lymphoma. 1992;8(3):161–6.PubMedCrossRefGoogle Scholar
  455. 455.
    Gaidano G, Ballerini P, Gong JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 1991;88(12):5413–7.PubMedCrossRefGoogle Scholar
  456. 456.
    Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T. p53 is frequently mutated in Burkitt’s lymphoma cell lines. EMBO J. 1991;10(10):2879–87.PubMedGoogle Scholar
  457. 457.
    Nakamura H, Said JW, Miller CW, Koeffler HP. Mutation and protein expression of p53 in acquired immunodeficiency syndrome-related lymphomas. Blood. 1993;82(3):920–6.PubMedGoogle Scholar
  458. 458.
    Roy B, Beamon J, Balint E, Reisman D. Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol. 1994;14(12):7805–15.PubMedGoogle Scholar
  459. 459.
    Delecluse HJ, Hummel M, Marafioti T, Anagnostopoulos I, Stein H. Common and HIV-related diffuse large B-cell lymphomas differ in their immunoglobulin gene mutation pattern. J Pathol. 1999;188(2):133–8.PubMedCrossRefGoogle Scholar
  460. 460.
    Cingolani A, Gastaldi R, Fassone L, et al. Epstein-Barr virus infection is predictive of CNS involvement in systemic AIDS-related non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18(19): 3325–30.PubMedGoogle Scholar
  461. 461.
    Montagnier L, Gruest J, Chamaret S, et al. Adaptation of ­lymphadenopathy associated virus (LAV) to replication in ­EBV-transformed B lymphoblastoid cell lines. Science. 1984; 225(4657):63–6.PubMedCrossRefGoogle Scholar
  462. 462.
    Laurence J, Astrin SM. Human immunodeficiency virus induction of malignant transformation in human B lymphocytes. Proc Natl Acad Sci USA. 1991;88(17):7635–9.PubMedCrossRefGoogle Scholar
  463. 463.
    Shiramizu B, Herndier BG, McGrath MS. Identification of a common clonal human immunodeficiency virus integration site in human immunodeficiency virus-associated lymphomas. Cancer Res. 1994;54(8):2069–72.PubMedGoogle Scholar
  464. 464.
    Yarchoan R, Redfield RR, Broder S. Mechanisms of B cell activation in patients with acquired immunodeficiency syndrome and related disorders. Contribution of antibody-producing B cells, of Epstein-Barr virus-infected B cells, and of immunoglobulin production induced by human T cell lymphotropic virus, type III/lymphadenopathy-associated virus. J Clin Invest. 1986;78(2): 439–47.PubMedCrossRefGoogle Scholar
  465. 465.
    Schnittman SM, Lane HC, Higgins SE, Folks T, Fauci AS. Direct polyclonal activation of human B lymphocytes by the acquired immune deficiency syndrome virus. Science. 1986;233(4768): 1084–6.PubMedCrossRefGoogle Scholar
  466. 466.
    Fauci AS, Schnittman SM, Poli G, Koenig S, Pantaleo G. NIH conference. Immunopathogenic mechanisms in human immunodeficiency virus (HIV) infection. Ann Intern Med. 1991;114(8):678–93.PubMedGoogle Scholar
  467. 467.
    Konrad RJ, Kricka LJ, Goodman DB, Goldman J, Silberstein LE. Brief report: myeloma-associated paraprotein directed against the HIV-1 p24 antigen in an HIV-1-seropositive patient. N Engl J Med. 1993;328(25):1817–9.PubMedCrossRefGoogle Scholar
  468. 468.
    Cunto-Amesty G, Przybylski G, Honczarenko M, Monroe JG, Silberstein LE. Evidence that immunoglobulin specificities of AIDS-related lymphoma are not directed to HIV-related antigens. Blood. 2000;95(4):1393–9.PubMedGoogle Scholar
  469. 469.
    Hirano T, Taga T, Nakano N, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA. 1985;82(16):5490–4.PubMedCrossRefGoogle Scholar
  470. 470.
    Schwab G, Siegall CB, Aarden LA, Neckers LM, Nordan RP. Characterization of an interleukin-6-mediated autocrine growth loop in the human multiple myeloma cell line, U266. Blood. 1991;77(3):587–93.PubMedGoogle Scholar
  471. 471.
    Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332(6159):83–5.PubMedCrossRefGoogle Scholar
  472. 472.
    Tosato G, Tanner J, Jones KD, Revel M, Pike SE. Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells. J Virol. 1990;64(6):3033–41.PubMedGoogle Scholar
  473. 473.
    Nakajima K, Martinez-Maza O, Hirano T, et al. Induction of IL-6 (B cell stimulatory factor-2/IFN-beta 2) production by HIV. J Immunol. 1989;142(2):531–6.PubMedGoogle Scholar
  474. 474.
    Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G. Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood. 2000;96(4):1599–601.PubMedGoogle Scholar
  475. 475.
    Benjamin D, Knobloch TJ, Dayton MA. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt’s lymphoma constitutively secrete large quantities of interleukin-10. Blood. 1992;80(5): 1289–98.PubMedGoogle Scholar
  476. 476.
    Blattner WA. Human retroviruses: their role in cancer. Proc Assoc Am Phys. 1999;111:563–72.PubMedCrossRefGoogle Scholar
  477. 477.
    Poiesz B, Dube D, Dube S, et al. HTLV-II-associated cutaneous T-cell lymphoma in a patient with HIV-1 infection. N Engl J Med. 2000;342(13):930–6.PubMedCrossRefGoogle Scholar
  478. 478.
    Salahuddin SZ, Ablashi DV, Markham PD, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986;234(4776):596–601.PubMedCrossRefGoogle Scholar
  479. 479.
    Frenkel N, Schirmer EC, Wyatt LS, et al. Isolation of a new ­herpesvirus from human CD4+ T cells. Proc Natl Acad Sci USA. 1990;87(2):748–52.PubMedCrossRefGoogle Scholar
  480. 480.
    Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213–24.PubMedCrossRefGoogle Scholar
  481. 481.
    Yachie A, Tosato G, Straus S, Blaese RM. T cell stimulation and polyclonal B cell activation induced by cytomegalovirus. Clin Res. 1984;32:510a.Google Scholar
  482. 482.
    Robert-Guroff M, Weiss SH, Giron JA, et al. Prevalence of antibodies to HTLV-I, -II, and -III in intravenous drug abusers from an AIDS endemic region. JAMA. 1986;255(22):3133–7.PubMedCrossRefGoogle Scholar
  483. 483.
    Kanner SB, Parks ES, Scott GB, Parks WP. Simultaneous infections with human T cell leukemia virus type I and the human immunodeficiency virus. J Infect Dis. 1987;155(4):617–25.PubMedCrossRefGoogle Scholar
  484. 484.
    Cortes E, Detels R, Aboulafia D, et al. HIV-1, HIV-2, and HTLV-I infection in high-risk groups in Brazil. N Engl J Med. 1989;320(15):953–8.PubMedCrossRefGoogle Scholar
  485. 485.
    Baurmann H, Miclea JM, Ferchal F, et al. Adult T-cell leukemia associated with HTLV-I and simultaneous infection by human immunodeficiency virus type 2 and human herpesvirus 6 in an African woman: a clinical, virologic, and familial serologic study. Am J Med. 1988;85(6):853–7.PubMedCrossRefGoogle Scholar
  486. 486.
    Bartholomew C, Saxinger WC, Clark JW, et al. Transmission of HTLV-I and HIV among homosexual men in Trinidad. JAMA. 1987;257(19):2604–8.PubMedCrossRefGoogle Scholar
  487. 487.
    Zack JA, Cann AJ, Lugo JP, Chen IS. HIV-1 production from infected peripheral blood T cells after HTLV-I induced mitogenic stimulation. Science. 1988;240(4855):1026–9.PubMedCrossRefGoogle Scholar
  488. 488.
    Davis MG, Kenney SC, Kamine J, Pagano JS, Huang ES. Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus. Proc Natl Acad Sci USA. 1987;84(23):8642–6.PubMedCrossRefGoogle Scholar
  489. 489.
    Siekevitz M, Josephs SF, Dukovich M, Peffer N, Wong-Staal F, Greene WC. Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science. 1987;238(4833):1575–8.PubMedCrossRefGoogle Scholar
  490. 490.
    Levine AM. AIDS-related malignancies: the emerging epidemic. J Natl Cancer Inst. 1993;85(17):1382–97.PubMedCrossRefGoogle Scholar
  491. 491.
    Zutter MM, Martin PJ, Sale GE, et al. Epstein-Barr virus lymphoproliferation after bone marrow transplantation. Blood. 1988;72(2):520–9.PubMedGoogle Scholar
  492. 492.
    Tirelli U, Errante D, Oksenhendler E, et al. The treatment of AIDS-related lymphoma. French-Italian Cooperative Study Group. JAMA. 1992;267(4):509–10.PubMedCrossRefGoogle Scholar
  493. 493.
    Tirelli U, Errante D, Oksenhendler E, et al. Prospective study with combined low-dose chemotherapy and zidovudine in 37 patients with poor-prognosis AIDS-related non-Hodgkin’s lymphoma. French-Italian Cooperative Study Group. Ann Oncol. 1992;3(10): 843–7.PubMedGoogle Scholar
  494. 494.
    Sparano JA, Wiernik PH, Strack M, Leaf A, Becker N, Valentine ES. Infusional cyclophosphamide, doxorubicin, and etoposide in human immunodeficiency virus- and human T-cell leukemia virus type I-related non-Hodgkin’s lymphoma: a highly active regimen. Blood. 1993;81(10):2810–5.PubMedGoogle Scholar
  495. 495.
    Sparano JA, Wiernik PH, Hu X, et al. Pilot trial of infusional cyclophosphamide, doxorubicin, and etoposide plus didanosine and filgrastim in patients with human immunodeficiency virus-associated non-Hodgkin’s lymphoma. J Clin Oncol. 1996;14(11):3026–35.PubMedGoogle Scholar
  496. 496.
    Schurmann D, Grunewald T, Weiss R, Jautzke G, Pohle HD, Ruf B. Intensive treatment of AIDS-related non-Hodgkin’s lymphomas with the MACOP-B protocol. Eur J Haematol. 1995;54(2): 73–7.PubMedCrossRefGoogle Scholar
  497. 497.
    Kaplan LD, Straus DJ, Testa MA, et al. Low-dose compared with standard-dose m-BACOD chemotherapy for non-Hodgkin’s lymphoma associated with human immunodeficiency virus infection. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N Engl J Med. 1997;336(23):1641–8.PubMedCrossRefGoogle Scholar
  498. 498.
    Kaplan LD, Kahn JO, Crowe S, et al. Clinical and virologic effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma: results of a randomized trial. J Clin Oncol. 1991;9(6):929–40.PubMedGoogle Scholar
  499. 499.
    Longo DL, DeVita Jr VT, Duffey PL, et al. Superiority of ProMACE-CytaBOM over ProMACE-MOPP in the treatment of advanced diffuse aggressive lymphoma: results of a prospective randomized trial. J Clin Oncol. 1991;9(1):25–38.PubMedGoogle Scholar
  500. 500.
    Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–6.PubMedCrossRefGoogle Scholar
  501. 501.
    Coiffier B, Gisselbrecht C, Herbrecht R, Tilly H, Bosly A, Brousse N. LNH-84 regimen: a multicenter study of intensive chemotherapy in 737 patients with aggressive malignant lymphoma. J Clin Oncol. 1989;7(8):1018–26.PubMedGoogle Scholar
  502. 502.
    Armitage JO. Treatment of non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1023–30.PubMedCrossRefGoogle Scholar
  503. 503.
    Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.PubMedCrossRefGoogle Scholar
  504. 504.
    Kaplan LD. Management of HIV-associated non-Hodgkin’s lymphoma. AIDS Clin Care. 1994;6:1–3.Google Scholar
  505. 505.
    Mounier N, Spina M, Gabarre J, et al. AIDS-related non-Hodgkin lymphoma: final analysis of 485 patients treated with risk-adapted intensive chemotherapy. Blood. 2006;107(10):3832–40.PubMedCrossRefGoogle Scholar
  506. 506.
    Marti-Carvajal AJ, Cardona AF, Lawrence A. Interventions for previously untreated patients with AIDS-associated non-Hodgkin’s lymphoma. Cochrane Database Syst Rev 2009(3):CD005419.Google Scholar
  507. 507.
    Kaplan LD, Lee JY, Ambinder RF, et al. Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood. 2005;106(5):1538–43.PubMedCrossRefGoogle Scholar
  508. 508.
    Ratner L, Lee J, Tang S, et al. Chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma in combination with highly active antiretroviral therapy. J Clin Oncol. 2001;19(8):2171–8.PubMedGoogle Scholar
  509. 509.
    Hoffmann C, Wolf E, Fatkenheuer G, et al. Response to highly active antiretroviral therapy strongly predicts outcome in patients with AIDS-related lymphoma. AIDS. 2003;17(10):1521–9.PubMedCrossRefGoogle Scholar
  510. 510.
    Little RF, Pittaluga S, Grant N, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101(12):4653–9.PubMedCrossRefGoogle Scholar
  511. 511.
    Sparano JA, Lee JY, Kaplan LD, et al. Rituximab plus concurrent infusional EPOCH chemotherapy is highly effective in HIV-associated B-cell non-Hodgkin lymphoma. Blood. 2010;115(15):3008–16.PubMedCrossRefGoogle Scholar
  512. 512.
    Newell M, Goldstein D, Milliken S, et al. Phase I/II trial of filgrastim (r-metHuG-CSF), CEOP chemotherapy and antiretroviral therapy in HIV-related non-Hodgkin’s lymphoma. Ann Oncol. 1996;7(10):1029–36.PubMedCrossRefGoogle Scholar
  513. 513.
    Kersten MJ, Verduyn TJ, Reiss P, Evers LM, de Wolf F, van Oers MH. Treatment of AIDS-related non-Hodgkin’s lymphoma with chemotherapy (CNOP) and r-hu-G-CSF: clinical outcome and effect on HIV-1 viral load. Ann Oncol. 1998;9(10):1135–8.PubMedCrossRefGoogle Scholar
  514. 514.
    Levine AM. Management of AIDS-related lymphoma. Curr Opin Oncol. 2008;20(5):522–8.PubMedCrossRefGoogle Scholar
  515. 515.
    Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2004;103(10):3684–8.PubMedCrossRefGoogle Scholar
  516. 516.
    Bi J, Espina BM, Tulpule A, Boswell W, Levine AM. High-dose cytosine-arabinoside and cisplatin regimens as salvage therapy for refractory or relapsed AIDS-related non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr. 2001;28(5):416–21.PubMedGoogle Scholar
  517. 517.
    Krishnan A, Molina A, Zaia J, et al. Durable remissions with autologous stem cell transplantation for high-risk HIV-associated lymphomas. Blood. 2005;105(2):874–8.PubMedCrossRefGoogle Scholar
  518. 518.
    Spitzer TR, Ambinder RF, Lee JY, et al. Dose-reduced busulfan, cyclophosphamide, and autologous stem cell transplantation for human immunodeficiency virus-associated lymphoma: AIDS Malignancy Consortium study 020. Biol Blood Marrow Transplant. 2008;14(1):59–66.PubMedCrossRefGoogle Scholar
  519. 519.
    Unger PD, Strauchen JA. Hodgkin’s disease in AIDS complex patient. Report of four cases and tissue immunologic marker studies. Cancer. 1986;58(4):821–5.PubMedCrossRefGoogle Scholar
  520. 520.
    Temple JJ, Andes WA. AIDS and Hodgkin’s disease. Lancet. 1986;2(8504):454–5.PubMedCrossRefGoogle Scholar
  521. 521.
    Schoeppel SL, Hoppe RT, Dorfman RF, et al. Hodgkin’s disease in homosexual men with generalized lymphadenopathy. Ann Intern Med. 1985;102(1):68–70.PubMedGoogle Scholar
  522. 522.
    Scheib RG, Siegel RS. Atypical Hodgkin’s disease and the acquired immunodeficiency syndrome. Ann Intern Med. 1985;102(4):554.PubMedGoogle Scholar
  523. 523.
    Robert NJ, Schneiderman H. Hodgkin’s disease and the acquired immunodeficiency syndrome. Ann Intern Med. 1984;101(1):142–3.PubMedGoogle Scholar
  524. 524.
    Prior E, Goldberg AF, Conjalka MS, Chapman WE, Tay S, Ames ED. Hodgkin’s disease in homosexual men. An AIDS-related phenomenon? Am J Med. 1986;81(6):1085–8.PubMedCrossRefGoogle Scholar
  525. 525.
    Longo DL, Fauci AS, Macher AM. Kaposi’s sarcoma and other neoplasms. NIH Conference: Acquired Immunodeficiency Syndrome: Epidemiologic, Clinical, Immunologic, and Therapeutic Considerations. Ann Intern Med. 1984;100:96–8.Google Scholar
  526. 526.
    Baer DM, Anderson ET, Wilkinson LS. Acquired immune deficiency syndrome in homosexual men with Hodgkin’s disease. Three case reports. Am J Med. 1986;80(4):738–40.PubMedCrossRefGoogle Scholar
  527. 527.
    Hessol NA, Katz MH, Liu JY, Buchbinder SP, Rubino CJ, Holmberg SD. Increased incidence of Hodgkin disease in homosexual men with HIV infection. Ann Intern Med. 1992;117(4):309–11.PubMedGoogle Scholar
  528. 528.
    Mounier N, Spina M, Spano JP. Hodgkin lymphoma in HIV positive patients. Curr HIV Res. 2010;8(2):141–6.PubMedCrossRefGoogle Scholar
  529. 529.
    Tirelli U, Vaccher E, Rezza G, et al. Hodgkin’s disease in association with acquired immunodeficiency syndrome (AIDS). A report on 36 patients. Gruppo Italiano Cooperativo AIDS and Tumori. Acta Oncol. 1989;28(5):637–9.PubMedCrossRefGoogle Scholar
  530. 530.
    Biggar RJ, Rabkin CS. The epidemiology of acquired immunodeficiency syndrome-related lymphomas. Curr Opin Oncol. 1992;4(5):883–93.PubMedCrossRefGoogle Scholar
  531. 531.
    Cheung TW, Arai S. HIV-associated Hodkin’s disease. The AIDS Reader 1999(March/April):131–137.Google Scholar
  532. 532.
    Lyter DW, Bryant J, Thackeray R, Rinaldo CR, Kingsley LA. Incidence of human immunodeficiency virus-related and nonrelated malignancies in a large cohort of homosexual men. J Clin Oncol. 1995;13(10):2540–6.PubMedGoogle Scholar
  533. 533.
    Tirelli U, Vaccher E, Rezza G, et al. Hodgkin disease and infection with the human immunodeficiency virus (HIV) in Italy. Ann Intern Med. 1988;108(2):309–10.PubMedGoogle Scholar
  534. 534.
    Serrano M, Bellas C, Campo E, et al. Hodgkin’s disease in patients with antibodies to human immunodeficiency virus. A study of 22 patients. Cancer. 1990;65(10):2248–54.PubMedCrossRefGoogle Scholar
  535. 535.
    Roithmann S, Tourani JM, Andrieu JM. Hodgkin’s disease in HIV-infected intravenous drug abusers. N Engl J Med. 1990;323(4):275–6.PubMedGoogle Scholar
  536. 536.
    Monfardini S, Tirelli U, Vaccher E, Foa R, Gavosto F. Hodgkin’s disease in 63 intravenous drug users infected with human immunodeficiency virus. Gruppo Italiano Cooperativo AIDS & Tumori (GICAT). Ann Oncol. 1991;2 Suppl 2:201–5.PubMedGoogle Scholar
  537. 537.
    DeVita Jr VT, Mauch PM, Harris NL. Hodgkin’s disease. In: DeVita Jr VT, Hellman S, Roseneberg S, editors. Cancer: Principles and practice of oncology. 5th ed. New York: Lippincott-Raven; 1997. p. 2242–83.Google Scholar
  538. 538.
    Herida M, Mary-Krause M, Kaphan R, et al. Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J Clin Oncol. 2003;21(18):3447–53.PubMedCrossRefGoogle Scholar
  539. 539.
    Engels EA, Pfeiffer RM, Goedert JJ, et al. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20(12):1645–54.PubMedCrossRefGoogle Scholar
  540. 540.
    Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2009;27(6):884–90.PubMedCrossRefGoogle Scholar
  541. 541.
    Pelstring RJ, Zellmer RB, Sulak LE, Banks PM, Clare N. Hodgkin’s disease in association with human immunodeficiency virus infection. Pathologic and immunologic features. Cancer. 1991;67(7):1865–73.PubMedCrossRefGoogle Scholar
  542. 542.
    Gold JE, Altarac D, Ree HJ, Khan A, Sordillo PP, Zalusky R. HIV-associated Hodgkin disease: a clinical study of 18 cases and review of the literature. Am J Hematol. 1991;36(2):93–9.PubMedCrossRefGoogle Scholar
  543. 543.
    Ames ED, Conjalka MS, Goldberg AF, et al. Hodgkin’s disease and AIDS. Twenty-three new cases and a review of the literature. Hematol Oncol Clin North Am. 1991;5(2):343–56.PubMedGoogle Scholar
  544. 544.
    Urba WJ, Longo DL. Hodgkin’s disease. N Engl J Med. 1992;326(10):678–87.PubMedCrossRefGoogle Scholar
  545. 545.
    Tirelli U, Serraino D, Carbone A. Hodgkin disease and HIV. Ann Intern Med. 1993;118(4):313. author reply 313–14.PubMedGoogle Scholar
  546. 546.
    Tirelli U, Errante D, Dolcetti R, et al. Hodgkin’s disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J Clin Oncol. 1995;13(7):1758–67.PubMedGoogle Scholar
  547. 547.
    Frizzera G, Rosai J, Dehner LP, Spector BD, Kersey JH. Lymphoreticular disorders in primary immunodeficiencies: new findings based on an up-to-date histologic classification of 35 cases. Cancer. 1980;46(4):692–9.PubMedCrossRefGoogle Scholar
  548. 548.
    Papo T, Oksenhendler E, Bouvet E, Marche C, Monteil JP, Clauvel JP. Hodgkin’s disease of the tongue in a homosexual HIV-infected patient. Am J Hematol. 1991;37(2):143.PubMedCrossRefGoogle Scholar
  549. 549.
    Shaw MT, Jacobs SR. Cutaneous Hodgkin’s disease in a patient with human immunodeficiency virus infection. Cancer. 1989;64(12):2585–7.PubMedCrossRefGoogle Scholar
  550. 550.
    Xicoy B, Ribera JM, Miralles P, et al. Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin’s lymphoma. Haematologica. 2007;92(2):191–8.PubMedCrossRefGoogle Scholar
  551. 551.
    Tanaka PY, Pessoa Jr VP, Pracchia LF, Buccheri V, Chamone DA, Calore EE. Hodgkin lymphoma among patients infected with HIV in post-HAART era. Clin Lymphoma Myeloma. 2007;7(5): 364–8.PubMedCrossRefGoogle Scholar
  552. 552.
    Spina M, Gabarre J, Rossi G, et al. Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection. Blood. 2002;100(6):1984–8.PubMedCrossRefGoogle Scholar
  553. 553.
    Hartmann P, Rehwald U, Salzberger B, et al. BEACOPP therapeutic regimen for patients with Hodgkin’s disease and HIV infection. Ann Oncol. 2003;14(10):1562–9.PubMedCrossRefGoogle Scholar
  554. 554.
    Mounier N, Katlama C, Costagliola D, Chichmanian RM, Spano JP. Drug interactions between antineoplastic and antiretroviral therapies: Implications and management for clinical practice. Crit Rev Oncol Hematol. 2009;72(1):10–20.PubMedCrossRefGoogle Scholar
  555. 555.
    Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337(8737):320–2.PubMedCrossRefGoogle Scholar
  556. 556.
    Ames ED, Metroka CE, Goldberg AF. Hodgkin disease and HIV. Ann Intern Med. 1993;118(4):313. author reply 313-4.PubMedGoogle Scholar
  557. 557.
    Martyak LA, Yeganeh M, Saab S. Hepatitis C and lymphoproliferative disorders: from mixed cryoglobulinemia to non-Hodgkin’s lymphoma. Clin Gastroenterol Hepatol. 2009;7(8):900–5.PubMedCrossRefGoogle Scholar
  558. 558.
    Dal Maso L, Franceschi S. Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. Cancer Epidemiol Biomarkers Prev. 2006;15(11): 2078–85.PubMedCrossRefGoogle Scholar
  559. 559.
    Ohshima K, Suzumiya J, Sato K, et al. Nodal T-cell lymphoma in an HTLV-I-endemic area: proviral HTLV-I DNA, histological classification and clinical evaluation. Br J Haematol. 1998;101(4): 703–11.PubMedCrossRefGoogle Scholar
  560. 560.
    Taylor JM, Nicot C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis. 2008;13(6):733–47.PubMedCrossRefGoogle Scholar
  561. 561.
    Nicot C. Current views in HTLV-I-associated adult T-cell leukemia/lymphoma. Am J Hematol. 2005;78(3):232–9.PubMedCrossRefGoogle Scholar
  562. 562.
    Franchini G. Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood. 1995;86(10): 3619–39.PubMedGoogle Scholar
  563. 563.
    Peloponese Jr JM, Kinjo T, Jeang KT. Human T-cell leukemia virus type 1 Tax and cellular transformation. Int J Hematol. 2007;86(2):101–6.PubMedCrossRefGoogle Scholar
  564. 564.
    Nicot C, Mahieux R, Takemoto S, Franchini G. Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood. 2000;96(1):275–81.PubMedGoogle Scholar
  565. 565.
    Kawakami A, Nakashima T, Sakai H, et al. Inhibition of caspase cascade by HTLV-I tax through induction of NF-kappaB nuclear translocation. Blood. 1999;94(11):3847–54.PubMedGoogle Scholar
  566. 566.
    Horie R. NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol. 2007;26(5–6):269–81.PubMedCrossRefGoogle Scholar
  567. 567.
    Matutes E. Adult T-cell leukaemia/lymphoma. J Clin Pathol. 2007;60(12):1373–7.PubMedCrossRefGoogle Scholar
  568. 568.
    Soulier J, Grollet L, Oksenhendler E, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood. 1995;86(4):1276–80.PubMedGoogle Scholar
  569. 569.
    Luppi M, Barozzi P, Maiorana A, et al. Human herpesvirus-8 DNA sequences in human immunodeficiency virus-negative angioimmunoblastic lymphadenopathy and benign lymphadenopathy with giant germinal center hyperplasia and increased vascularity. Blood. 1996;87(9):3903–9.PubMedGoogle Scholar
  570. 570.
    Dupin N, Gorin I, Deleuze J, Agut H, Huraux JM, Escande JP. Herpes-like DNA sequences, AIDS-related tumors, and Castleman’s disease. N Engl J Med. 1995;333(12):798.PubMedGoogle Scholar
  571. 571.
    Dupin N, Diss TL, Kellam P, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood. 2000;95(4):1406–12.PubMedGoogle Scholar
  572. 572.
    Zuckerman E, Zuckerman T, Levine AM, et al. Hepatitis C virus infection in patients with B-cell non-Hodgkin lymphoma. Ann Intern Med. 1997;127(6):423–8.PubMedGoogle Scholar
  573. 573.
    Mazzaro C, Zagonel V, Monfardini S, et al. Hepatitis C virus and non-Hodgkin’s lymphomas. Br J Haematol. 1996;94(3):544–50.PubMedCrossRefGoogle Scholar
  574. 574.
    Luppi M, Longo G, Ferrari MG, et al. Clinico-pathological characterization of hepatitis C virus-related B-cell non-Hodgkin’s lymphomas without symptomatic cryoglobulinemia. Ann Oncol. 1998;9(5):495–8.PubMedCrossRefGoogle Scholar
  575. 575.
    Jou JH, Muir AJ. In the clinic. Hepatitis C. Ann Intern Med. 2008;148(11):ITC6-1-ITC6-16.PubMedGoogle Scholar
  576. 576.
    Udomsakdi-Auewarakul C, Auewarakul P, Sukpanichnant S, Muangsup W. Hepatitis C virus infection in patients with non-Hodgkin lymphoma in Thailand. Blood. 2000;95(11):3640–1.PubMedGoogle Scholar
  577. 577.
    Germanidis G, Haioun C, Pourquier J, et al. Hepatitis C virus infection in patients with overt B-cell non-Hodgkin’s lymphoma in a French center. Blood. 1999;93(5):1778–9.PubMedGoogle Scholar
  578. 578.
    Giordano TP, Henderson L, Landgren O, et al. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA. 2007;297(18):2010–7.PubMedCrossRefGoogle Scholar
  579. 579.
    Matsuo K, Kusano A, Sugumar A, Nakamura S, Tajima K, Mueller NE. Effect of hepatitis C virus infection on the risk of non-Hodgkin’s lymphoma: a meta-analysis of epidemiological studies. Cancer Sci. 2004;95(9):745–52.PubMedCrossRefGoogle Scholar
  580. 580.
    Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood. 2000;95(3):802–6.PubMedGoogle Scholar
  581. 581.
    Ferreri AJM, Ernberg I, Copie-Bergman C. Infectious agents and lymphoma development: molecular and clinical aspects. J Intern Med. 2009;265(4):421–38.PubMedCrossRefGoogle Scholar
  582. 582.
    Peterson WL. Helicobacter pylori and peptic ulcer disease. N Engl J Med. 1991;324(15):1043–8.PubMedCrossRefGoogle Scholar
  583. 583.
    McColl K, Murray L, El-Omar E, et al. Symptomatic benefit from eradicating Helicobacter pylori infection in patients with nonulcer dyspepsia. N Engl J Med. 1998;339(26):1869–74.PubMedCrossRefGoogle Scholar
  584. 584.
    Fisher RS, Parkman HP. Management of nonulcer dyspepsia. N Engl J Med. 1998;339(19):1376–81.PubMedCrossRefGoogle Scholar
  585. 585.
    Blum AL, Talley NJ, O’Morain C, et al. Lack of effect of treating Helicobacter pylori infection in patients with nonulcer dyspepsia. Omeprazole plus Clarithromycin and Amoxicillin Effect One Year after Treatment (OCAY) Study Group. N Engl J Med. 1998;339(26):1875–81.PubMedCrossRefGoogle Scholar
  586. 586.
    Parsonnet J, Friedman GD, Vandersteen DP, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325(16):1127–31.PubMedCrossRefGoogle Scholar
  587. 587.
    Nomura K, Kanegane H, Karasuyama H, et al. Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood. 2000;96(2):610–7.PubMedGoogle Scholar
  588. 588.
    Hansson LE, Nyren O, Hsing AW, et al. The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N Engl J Med. 1996;335(4):242–9.PubMedCrossRefGoogle Scholar
  589. 589.
    Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect. 2009;15(11):971–6.PubMedCrossRefGoogle Scholar
  590. 590.
    Eck M, Schmausser B, Greiner A, Muller-Hermelink HK. Helicobacter pylori in gastric mucosa-associated lymphoid tissue type lymphoma. Recent Results Cancer Res. 2000;156:9–18.PubMedCrossRefGoogle Scholar
  591. 591.
    Blaser MJ. In a world of black and white, Helicobacter pylori is gray. Ann Intern Med. 1999;130(8):695–7.PubMedGoogle Scholar
  592. 592.
    Zucca E, Roggero E. Biology and treatment of MALT lymphoma: the state-of-the-art in 1996. A workshop at the 6th International Conference on Malignant Lymphoma. Mucosa-associated lymphoid tissue. Ann Oncol. 1996;7(8):787–92.PubMedCrossRefGoogle Scholar
  593. 593.
    Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–6.PubMedCrossRefGoogle Scholar
  594. 594.
    Schechter NR, Yahalom J. Low-grade MALT lymphoma of the stomach: a review of treatment options. Int J Radiat Oncol Biol Phys. 2000;46(5):1093–103.PubMedCrossRefGoogle Scholar
  595. 595.
    Isaacson PG. Gastrointestinal lymphomas of T- and B-cell types. Mod Pathol. 1999;12(2):151–8.PubMedGoogle Scholar
  596. 596.
    Isaacson P, Wright DH. Extranodal malignant lymphoma arising from mucosa-associated lymphoid tissue. Cancer. 1984;53(11): 2515–24.PubMedCrossRefGoogle Scholar
  597. 597.
    Ruzich J, Fisher RI. MALT lymphoma. Clin Oncol Update. 2000;3:1–7.Google Scholar
  598. 598.
    Burke JS. Are there site-specific differences among the MALT lymphomas–morphologic, clinical? Am J Clin Pathol. 1999;111 (1 Suppl 1):S133–43.PubMedGoogle Scholar
  599. 599.
    Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–46.PubMedCrossRefGoogle Scholar
  600. 600.
    Santacroce L, Cagiano R, Del Prete R, et al. Helicobacter pylori infection and gastric MALTomas: an up-to-date and therapy highlight. Clin Ter. 2008;159(6):457–62.PubMedGoogle Scholar
  601. 601.
    Zucca E, Dreyling M. Gastric marginal zone lymphoma of MALT type: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20 Suppl 4:113–4.PubMedGoogle Scholar
  602. 602.
    Zucca E, Bertoni F, Roggero E, Cavalli F. The gastric marginal zone B-cell lymphoma of MALT type. Blood. 2000;96(2):410–9.PubMedGoogle Scholar
  603. 603.
    Bayerdorffer E, Miehlke S, Neubauer A, Stolte M. Gastric MALT-lymphoma and Helicobacter pylori infection. Aliment Pharmacol Ther. 1997;11 Suppl 1:89–94.PubMedCrossRefGoogle Scholar
  604. 604.
    Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol. 1996;178(2):122–7.PubMedCrossRefGoogle Scholar
  605. 605.
    Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342(8871):571–4.PubMedCrossRefGoogle Scholar
  606. 606.
    Fischbach W. Helicobacter pylori and lymphoproliferative disorders. Ital J Gastroenterol Hepatol. 1998;30 Suppl 3:S299–303.PubMedGoogle Scholar
  607. 607.
    Cheng TY, Lin JT, Chen LT, et al. Association of T-cell regulatory gene polymorphisms with susceptibility to gastric mucosa-associated lymphoid tissue lymphoma. J Clin Oncol. 2006;24(21): 3483–9.PubMedCrossRefGoogle Scholar
  608. 608.
    Peng H, Ranaldi R, Diss TC, Isaacson PG, Bearzi I, Pan L. High frequency of CagA  +  Helicobacter pylori infection in high-grade gastric MALT B-cell lymphomas. J Pathol. 1998;185(4):409–12.PubMedCrossRefGoogle Scholar
  609. 609.
    Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287(5457):1497–500.PubMedCrossRefGoogle Scholar
  610. 610.
    Bertoni F, Cotter FE, Zucca E. Molecular genetics of extranodal marginal zone (MALT-type) B-cell lymphoma. Leuk Lymphoma. 1999;35(1–2):57–68.PubMedCrossRefGoogle Scholar
  611. 611.
    Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7.PubMedCrossRefGoogle Scholar
  612. 612.
    Chan JK. Gastrointestinal lymphomas: an overview with emphasis on new findings and diagnostic problems. Semin Diagn Pathol. 1996;13(4):260–96.PubMedGoogle Scholar
  613. 613.
    Banerjee SK, Weston AP, Persons DL, Campbell DR. Non-random loss of chromosome 3 during transition of Helicobacter pylori-associated gastric MALT to B-cell MALT lymphoma revealed by fluorescence in situ hybridization. Cancer Lett. 1997;121(1):83–90.PubMedCrossRefGoogle Scholar
  614. 614.
    Wotherspoon AC, Finn TM, Isaacson PG. Trisomy 3 in low-grade B-cell lymphomas of mucosa-associated lymphoid tissue. Blood. 1995;85(8):2000–4.PubMedGoogle Scholar
  615. 615.
    Ott G, Katzenberger T, Greiner A, et al. The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin’s lymphomas of the mucosa-associated lymphoid tissue (MALT-) type. Cancer Res. 1997;57(18):3944–8.PubMedGoogle Scholar
  616. 616.
    Auer IA, Gascoyne RD, Connors JM, et al. t(11;18)(q21;q21) is the most common translocation in MALT lymphomas. Ann Oncol. 1997;8(10):979–85.PubMedCrossRefGoogle Scholar
  617. 617.
    Ye H, Liu H, Attygalle A, et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood. 2003;102(3):1012–8.PubMedCrossRefGoogle Scholar
  618. 618.
    Du MQ. MALT lymphoma: recent advances in aetiology and molecular genetics. J Clin Exp Hematop. 2007;47(2):31–42.PubMedCrossRefGoogle Scholar
  619. 619.
    Liu H, Ye H, Ruskone-Fourmestraux A, et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology. 2002;122(5):1286–94.PubMedCrossRefGoogle Scholar
  620. 620.
    Nakamura T, Nakamura S, Yonezumi M, et al. Helicobacter pylori and the t(11;18)(q21;q21) translocation in gastric low-grade B-cell lymphoma of mucosa-associated lymphoid tissue type. Jpn J Cancer Res. 2000;91(3):301–9.PubMedCrossRefGoogle Scholar
  621. 621.
    Willis TG, Jadayel DM, Du MQ, et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96(1):35–45.PubMedCrossRefGoogle Scholar
  622. 622.
    Du MQ, Peng H, Liu H, et al. BCL10 gene mutation in lymphoma. Blood. 2000;95(12):3885–90.PubMedGoogle Scholar
  623. 623.
    Ye H, Gong L, Liu H, et al. Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut. 2006;55(1):137–8.PubMedCrossRefGoogle Scholar
  624. 624.
    Nakamura S, Ye H, Bacon CM, et al. Clinical impact of genetic aberrations in gastric MALT lymphoma: a comprehensive analysis using interphase fluorescence in situ hybridisation. Gut. 2007;56(10):1358–63.PubMedCrossRefGoogle Scholar
  625. 625.
    Hansen PB, Vogt KC, Skov RL, Pedersen-Bjergaard U, Jacobsen M, Ralfkiaer E. Primary gastrointestinal non-Hodgkin’s lymphoma in adults: a population-based clinical and histopathologic study. J Intern Med. 1998;244(1):71–8.PubMedCrossRefGoogle Scholar
  626. 626.
    de Jong D, Boot H, Taal B. Histological grading with clinical relevance in gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Recent Results Cancer Res. 2000;156:27–32.PubMedCrossRefGoogle Scholar
  627. 627.
    Peng H, Du M, Diss TC, Isaacson PG, Pan L. Genetic evidence for a clonal link between low and high-grade components in gastric MALT B-cell lymphoma. Histopathology. 1997;30(5):425–9.PubMedCrossRefGoogle Scholar
  628. 628.
    Starostik P, Greiner A, Schultz A, et al. Genetic aberrations common in gastric high-grade large B-cell lymphoma. Blood. 2000;95(4):1180–7.PubMedGoogle Scholar
  629. 629.
    Peng H, Chen G, Du M, Singh N, Isaacson PG, Pan L. Replication error phenotype and p53 gene mutation in lymphomas of mucosa-associated lymphoid tissue. Am J Pathol. 1996;148(2):643–8.PubMedGoogle Scholar
  630. 630.
    Ohashi S, Segawa K, Okamura S, et al. A clinicopathologic study of gastric mucosa-associated lymphoid tissue lymphoma. Cancer. 2000;88(10):2210–9.PubMedCrossRefGoogle Scholar
  631. 631.
    Nakamura S, Akazawa K, Kinukawa N, Yao T, Tsuneyoshi M. Inverse correlation between the expression of bcl-2 and p53 proteins in primary gastric lymphoma. Hum Pathol. 1996;27(3):225–33.PubMedCrossRefGoogle Scholar
  632. 632.
    Nardini E, Aiello A, Giardini R, Colnaghi MI, Menard S, Balsari A. Detection of aberrant isotype switch recombination in low-grade and high-grade gastric MALT lymphomas. Blood. 2000;95(3):1032–8.PubMedGoogle Scholar
  633. 633.
    Wotherspoon AC, Doglioni C, de Boni M, Spencer J, Isaacson PG. Antibiotic treatment for low-grade gastric MALT lymphoma. Lancet. 1994;343(8911):1503.PubMedCrossRefGoogle Scholar
  634. 634.
    Savio A, Franzin G, Wotherspoon AC, et al. Diagnosis and posttreatment follow-up of Helicobacter pylori-positive gastric lymphoma of mucosa-associated lymphoid tissue: histology, polymerase chain reaction, or both? Blood. 1996;87(4):1255–60.PubMedGoogle Scholar
  635. 635.
    Roggero E, Zucca E, Pinotti G, et al. Eradication of Helicobacter pylori infection in primary low-grade gastric lymphoma of mucosa-associated lymphoid tissue. Ann Intern Med. 1995; 122(10):767–9.PubMedGoogle Scholar
  636. 636.
    Neubauer A, Bayerdorfer E, Rudolph B. Treatment of early gastric MALT-lymphoma patients by Helicobacter Pylori (HP) eradication. German MALT lymphoma trial. Blood. 1994;84:519a.Google Scholar
  637. 637.
    Alpen B, Neubauer A, Dierlamm J, et al. Translocation t(11;18) absent in early gastric marginal zone B-cell lymphoma of MALT type responding to eradication of Helicobacter pylori infection. Blood. 2000;95(12):4014–5.PubMedGoogle Scholar
  638. 638.
    Zucca E, Roggero E, Pinotti G. Lymphoma regression after eradication of H. pylori infection in primary low-grade gastric lymphoma of mucosa-associated lymphoid tissue (MALT) type. Blood. 1994;84:519a.Google Scholar
  639. 639.
    Thiede C, Wundisch T, Alpen B, et al. Long-term persistence of monoclonal B cells after cure of Helicobacter pylori infection and complete histologic remission in gastric mucosa-associated lymphoid tissue B-cell lymphoma. J Clin Oncol. 2001;19(6):1600–9.PubMedGoogle Scholar
  640. 640.
    Morgner A, Miehlke S, Fischbach W, et al. Complete remission of primary high-grade B-cell gastric lymphoma after cure of Helicobacter pylori infection. J Clin Oncol. 2001;19(7):2041–8.PubMedGoogle Scholar
  641. 641.
    Moslehi R, Devesa SS, Schairer C, Fraumeni Jr JF. Rapidly increasing incidence of ocular non-hodgkin lymphoma. J Natl Cancer Inst. 2006;98(13):936–9.PubMedCrossRefGoogle Scholar
  642. 642.
    Ferreri AJ, Dolcetti R, Du MQ, et al. Ocular adnexal MALT lymphoma: an intriguing model for antigen-driven lymphomagenesis and microbial-targeted therapy. Ann Oncol. 2008;19(5):835–46.PubMedCrossRefGoogle Scholar
  643. 643.
    Mannami T, Yoshino T, Oshima K, et al. Clinical, histopathological, and immunogenetic analysis of ocular adnexal lymphoproliferative disorders: characterization of malt lymphoma and reactive lymphoid hyperplasia. Mod Pathol. 2001;14(7):641–9.PubMedCrossRefGoogle Scholar
  644. 644.
    Streubel B, Huber D, Wohrer S, Chott A, Raderer M. Frequency of chromosomal aberrations involving MALT1 in mucosa-associated lymphoid tissue lymphoma in patients with Sjogren’s syndrome. Clin Cancer Res. 2004;10(2):476–80.PubMedCrossRefGoogle Scholar
  645. 645.
    Remstein ED, Kurtin PJ, James CD, Wang XY, Meyer RG, Dewald GW. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol. 2002;161(1):63–71.PubMedCrossRefGoogle Scholar
  646. 646.
    Lietman T, Brooks D, Moncada J, Schachter J, Dawson C, Dean D. Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis. 1998;26(6):1335–40.PubMedCrossRefGoogle Scholar
  647. 647.
    Ponzoni M, Ferreri AJ, Guidoboni M, et al. Chlamydia infection and lymphomas: association beyond ocular adnexal lymphomas highlighted by multiple detection methods. Clin Cancer Res. 2008;14(18):5794–800.PubMedCrossRefGoogle Scholar
  648. 648.
    Ferreri AJ, Dolcetti R, Dognini GP, et al. Chlamydophila psittaci is viable and infectious in the conjunctiva and peripheral blood of patients with ocular adnexal lymphoma: results of a single-center prospective case-control study. Int J Cancer. 2008;123(5): 1089–93.PubMedCrossRefGoogle Scholar
  649. 649.
    Yoo C, Ryu MH, Huh J, et al. Chlamydia psittaci infection and clinicopathologic analysis of ocular adnexal lymphomas in Korea. Am J Hematol. 2007;82(9):821–3.PubMedCrossRefGoogle Scholar
  650. 650.
    Aigelsreiter A, Leitner E, Deutsch AJ, et al. Chlamydia psittaci in MALT lymphomas of ocular adnexals: the Austrian experience. Leuk Res. 2008;32(8):1292–4.PubMedCrossRefGoogle Scholar
  651. 651.
    Chan CC, Shen D, Mochizuki M, et al. Detection of Helicobacter pylori and Chlamydia pneumoniae genes in primary orbital lymphoma. Trans Am Ophthalmol Soc. 2006;104:62–70.PubMedGoogle Scholar
  652. 652.
    Chanudet E, Adam P, Nicholson AG, et al. Chlamydiae and Mycoplasma infections in pulmonary MALT lymphoma. Br J Cancer. 2007;97(7):949–51.PubMedGoogle Scholar
  653. 653.
    Garbe C, Stein H, Dienemann D, Orfanos CE. Borrelia burgdorferi-associated cutaneous B cell lymphoma: clinical and immunohistologic characterization of four cases. J Am Acad Dermatol. 1991;24(4):584–90.PubMedCrossRefGoogle Scholar
  654. 654.
    Cerroni L, Zochling N, Putz B, Kerl H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J Cutan Pathol. 1997;24(8):457–61.PubMedCrossRefGoogle Scholar
  655. 655.
    Goodlad JR, Davidson MM, Hollowood K, et al. Primary cutaneous B-cell lymphoma and Borrelia burgdorferi infection in patients from the Highlands of Scotland. Am J Surg Pathol. 2000;24(9):1279–85.PubMedCrossRefGoogle Scholar
  656. 656.
    Roggero E, Zucca E, Mainetti C, et al. Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin. Hum Pathol. 2000;31(2):263–8.PubMedCrossRefGoogle Scholar
  657. 657.
    Kutting B, Bonsmann G, Metze D, Luger TA, Cerroni L. Borrelia burgdorferi-associated primary cutaneous B cell lymphoma: complete clearing of skin lesions after antibiotic pulse therapy or intralesional injection of interferon alfa-2a. J Am Acad Dermatol. 1997;36(2 Pt 2):311–4.PubMedCrossRefGoogle Scholar
  658. 658.
    Shaye OS, Levine AM. Marginal zone lymphoma. J Natl Compr Canc Netw. 2006;4(3):311–8.PubMedGoogle Scholar
  659. 659.
    Guidoboni M, Ferreri AJ, Ponzoni M, Doglioni C, Dolcetti R. Infectious agents in mucosa-associated lymphoid tissue-type lymphomas: pathogenic role and therapeutic perspectives. Clin Lymphoma Myeloma. 2006;6(4):289–300.PubMedCrossRefGoogle Scholar
  660. 660.
    Schollkopf C, Melbye M, Munksgaard L, et al. Borrelia infection and risk of non-Hodgkin lymphoma. Blood. 2008;111(12): 5524–9.PubMedCrossRefGoogle Scholar
  661. 661.
    Tothova SM, Bonin S, Trevisan G, Stanta G. Mycosis fungoides: is it a Borrelia burgdorferi-associated disease? Br J Cancer. 2006;94(6):879–83.PubMedCrossRefGoogle Scholar
  662. 662.
    Martin IG, Aldoori MI. Immunoproliferative small intestinal disease: Mediterranean lymphoma and alpha heavy chain disease. Br J Surg. 1994;81(1):20–4.PubMedCrossRefGoogle Scholar
  663. 663.
    Taylor AL, Marcus R, Bradley JA. Post-transplant lymphoproliferative disorders (PTLD) after solid organ transplantation. Crit Rev Oncol Hematol. 2005;56(1):155–67.PubMedCrossRefGoogle Scholar
  664. 664.
    Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med. 2005;56:29–44.PubMedCrossRefGoogle Scholar
  665. 665.
    Penn I, Brunson ME. Cancers after cyclosporine therapy. Transplant Proc. 1988;20(3 Suppl 3):885–92.PubMedGoogle Scholar
  666. 666.
    Penn I. Cancers following cyclosporine therapy. Transplant Proc. 1987;19:2211–3.PubMedGoogle Scholar
  667. 667.
    Penn I. Cancers following cyclosporine therapy. Transplantation. 1987;43(1):32–5.PubMedCrossRefGoogle Scholar
  668. 668.
    Penn I. Depressed immunity and the development of cancer. Clin Exp Immunol. 1981;46(3):459–74.PubMedGoogle Scholar
  669. 669.
    Penn I. Cancer in the immunosuppressed organ recipient. Transplant Proc. 1991;23(2):1771–2.PubMedGoogle Scholar
  670. 670.
    Penn I. Lymphomas complicating organ transplantation. Transplant. 1983;15:2790–7.Google Scholar
  671. 671.
    Hoover R, Fraumeni Jr JF. Risk of cancer in renal-transplant recipients. Lancet. 1973;2(7820):55–7.PubMedCrossRefGoogle Scholar
  672. 672.
    Ghods AJ, Ossareh S. Lymphoma-the most common neoplasia in renal transplant recipients. Transplant Proc. 2000;32(3):585–6.PubMedCrossRefGoogle Scholar
  673. 673.
    Nalesnik MA, Makowka L, Starzl TE. The diagnosis and treatment of posttransplant lymphoproliferative disorders. Curr Probl Surg. 1988;25(6):367–472.PubMedCrossRefGoogle Scholar
  674. 674.
    Penn I. Donor transmitted disease: cancer. Transplant Proc. 1991;23(5):2629–31.PubMedGoogle Scholar
  675. 675.
    Morrison VA, Dunn DL, Manivel JC, Gajl-Peczalska KJ, Peterson BA. Clinical characteristics of post-transplant lymphoproliferative disorders. Am J Med. 1994;97(1):14–24.PubMedCrossRefGoogle Scholar
  676. 676.
    Hood IM, Mahendra P, McNeil K, Marcus RE. Hodgkin’s disease after cardiac transplant: a report of two cases. Clin Lab Haematol. 1996;18(2):115–6.PubMedCrossRefGoogle Scholar
  677. 677.
    Garnier JL, Lebranchu Y, Dantal J, et al. Hodgkin’s disease after transplantation. Transplantation. 1996;61(1):71–6.PubMedCrossRefGoogle Scholar
  678. 678.
    Bierman PJ, Vose JM, Langnas AN, et al. Hodgkin’s disease following solid organ transplantation. Ann Oncol. 1996;7(3):265–70.PubMedCrossRefGoogle Scholar
  679. 679.
    Quinlan SC, Morton LM, Pfeiffer RM, et al. Increased risk for lymphoid and myeloid neoplasms in elderly solid-organ transplant recipients. Cancer Epidemiol Biomarkers Prev. 2010;19(5): 1229–37.PubMedCrossRefGoogle Scholar
  680. 680.
    Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet. 1993;342(8886–8887): 1514–6.PubMedCrossRefGoogle Scholar
  681. 681.
    Wilkinson AH, Smith JL, Hunsicker LG, et al. Increased frequency of posttransplant lymphomas in patients treated with cyclosporine, azathioprine, and prednisone. Transplantation. 1989;47(2):293–6.PubMedCrossRefGoogle Scholar
  682. 682.
    Armitage JM, Kormos RL, Stuart RS, et al. Posttransplant lymphoproliferative disease in thoracic organ transplant patients: ten years of cyclosporine-based immunosuppression. J Heart Lung Transplant. 1991;10(6):877–86. discussion 886-7.PubMedGoogle Scholar
  683. 683.
    Smith JL, Wilkinson AH, Hunsicker LG, et al. Increased frequency of posttransplant lymphomas in patients treated with cyclosporin, azathioprine, and prednisone. Transplant Proc. 1989;21(1 Pt 3):3199–200.PubMedGoogle Scholar
  684. 684.
    Cockburn I. Assessment of the risks of malignancy and lymphomas developing in patients using Sandimmune. Transplant Proc. 1987;19(1 Pt 2):1804–7.PubMedGoogle Scholar
  685. 685.
    Swinnen LJ. Overview of posttransplant B-cell lymphoproliferative disorders. Sem Oncol. 1999;26 Suppl 14:21–5.Google Scholar
  686. 686.
    Egan J, Stewart J, Yonan N, Arrand J, Woodcock A. Non-Hodgkin lymphoma in heart/lung transplant recipients. Lancet. 1994;343(8895):481.PubMedCrossRefGoogle Scholar
  687. 687.
    York LJ, Qualtiere LF. Cyclosporin abrogates virus-specific T-cell control of EBV-induced B-cell lymphoproliferation. Viral Immunol. 1990;3(2):127–36.PubMedCrossRefGoogle Scholar
  688. 688.
    Walz G, Zanker B, Melton LB, Suthanthiran M, Strom TB. Possible association of the immunosuppressive and B cell lymphoma-promoting properties of cyclosporine. Transplantation. 1990;49(1):191–4.PubMedCrossRefGoogle Scholar
  689. 689.
    Kelly GE, Meikle W, Sheil AG. Effects of immunosuppressive therapy on the induction of skin tumors by ultraviolet irradiation in hairless mice. Transplantation. 1987;44(3):429–34.PubMedCrossRefGoogle Scholar
  690. 690.
    Calne RY, Rolles K, White DJ, et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet. 1979;2(8151): 1033–6.PubMedCrossRefGoogle Scholar
  691. 691.
    Bieber CP, Reitz BA, Jamieson SW, Oyer PE, Stinson EB. Malignant lymphoma in cyclosporin A treated allograft recipients. Lancet. 1980;1(8158):43.PubMedCrossRefGoogle Scholar
  692. 692.
    Land W. Optimal use of cyclosporine in clinical organ transplantation. Transplant Proc. 1987;19(1 Pt 1):130–5.PubMedGoogle Scholar
  693. 693.
    Gruber SA, Skjei KL, Sothern RB, et al. Cancer development in renal allograft recipients treated with conventional and cyclosporine immunosuppression. Transplant Proc. 1991;23(1 Pt 2):1104–5.PubMedGoogle Scholar
  694. 694.
    Starzl TE, Porter KA, Francavilla A, Iwatsuki S. Reversal of hepatic alpha-1-antitrypsin deposition after portacaval shunt. Lancet. 1983;2(8347):424–6.PubMedCrossRefGoogle Scholar
  695. 695.
    Swinnen LJ, Costanzo-Nordin MR, Fisher SG, et al. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med. 1990;323(25):1723–8.PubMedCrossRefGoogle Scholar
  696. 696.
    Penn I. Immunosuppression and malignant disease. In: Twomey G, editor. Immunopathology of neoplasms. New York: Plenum; 1978. p. 223–7.CrossRefGoogle Scholar
  697. 697.
    Jamil B, Nicholls K, Becker GJ, Walker RG. Impact of acute rejection therapy on infections and malignancies in renal transplant recipients. Transplantation. 1999;68(10):1597–603.PubMedCrossRefGoogle Scholar
  698. 698.
    Jones C, Bleau B, Buskard N, et al. Simultaneous development of diffuse immunoblastic lymphoma in recipients of renal transplants from a single cadaver donor: transmission of Epstein-Barr virus and triggering by OKT3. Am J Kidney Dis. 1994;23(1): 130–4.PubMedGoogle Scholar
  699. 699.
    Cockfield SM, Preiksaitis J, Harvey E, et al. Is sequential use of ALG and OKT3 in renal transplants associated with an increased incidence of fulminant posttransplant lymphoproliferative disorder? Transplant Proc. 1991;23(1 Pt 2):1106–7.PubMedGoogle Scholar
  700. 700.
    Ellis D, Jaffe R, Green M, et al. Epstein-Barr virus-related disorders in children undergoing renal transplantation with tacrolimus-based immunosuppression. Transplantation. 1999;68(7):997–1003.PubMedCrossRefGoogle Scholar
  701. 701.
    Ciancio G, Siquijor AP, Burke GW, et al. Post-transplant lymphoproliferative disease in kidney transplant patients in the new immunosuppressive era. Clin Transplant. 1997;11(3):243–9.PubMedGoogle Scholar
  702. 702.
    Swinnen LJ. Overview of posttransplant B-cell lymphoproliferative disorders. Semin Oncol. 1999;26(5 Suppl 14):21–5.PubMedGoogle Scholar
  703. 703.
    Starzl TE, Nalesnik MA, Porter KA, et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet. 1984;1(8377):583–7.PubMedCrossRefGoogle Scholar
  704. 704.
    Hanto DW, Sakamoto K, Purtilo DT, Simmons RL, Najarian JS. The Epstein-Barr virus in the pathogenesis of posttransplant lymphoproliferative disorders. Clinical, pathologic, and virologic correlation. Surgery. 1981;90(2):204–13.PubMedGoogle Scholar
  705. 705.
    Hanto DW, Birkenbach M, Frizzera G, Gajl-Peczalska KJ, Simmons RL, Schubach WH. Confirmation of the heterogeneity of posttransplant Epstein-Barr virus-associated B cell proliferations by immunoglobulin gene rearrangement analyses. Transplantation. 1989;47(3):458–64.PubMedCrossRefGoogle Scholar
  706. 706.
    Quintanilla-Martinez L, Lome-Maldonado C, Schwarzmann F, et al. Post-transplantation lymphoproliferative disorders in Mexico: an aggressive clonal disease associated with Epstein-Barr virus type A. Mod Pathol. 1998;11(2):200–8.PubMedGoogle Scholar
  707. 707.
    Nalesnik MA. Clinicopathologic features of posttransplant lymphoproliferative disorders. Ann Transplant. 1997;2(4):33–40.PubMedGoogle Scholar
  708. 708.
    Chadburn A, Cesarman E, Knowles DM. Molecular pathology of posttransplantation lymphoproliferative disorders. Semin Diagn Pathol. 1997;14(1):15–26.PubMedGoogle Scholar
  709. 709.
    Chadburn A, Hyjeck E, Ying L. Epsteind Barr virus (EBV) gene expression in post-transplantation lymphoproliferative disorders (PT-LPDs). Mod Pathol. 1999;12:133a.Google Scholar
  710. 710.
    Biemer JJ. Malignant lymphomas associated with immunodeficiency states. Ann Clin Lab Sci. 1990;20(3):175–91.PubMedGoogle Scholar
  711. 711.
    Cleary ML, Warnke R, Sklar J. Monoclonality of lymphoproliferative lesions in cardiac-transplant recipients. Clonal analysis based on immunoglobulin-gene rearrangements. N Engl J Med. 1984;310(8):477–82.PubMedCrossRefGoogle Scholar
  712. 712.
    Seiden MV, Sklar J. Molecular genetic analysis of post-transplant lymphoproliferative disorders. Hematol Oncol Clin North Am. 1993;7(2):447–65.PubMedGoogle Scholar
  713. 713.
    Patton DF, Wilkowski CW, Hanson CA, et al. Epstein-Barr virus–determined clonality in posttransplant lymphoproliferative disease. Transplantation. 1990;49(6):1080–4.PubMedCrossRefGoogle Scholar
  714. 714.
    Cleary ML, Sklar J. Lymphoproliferative disorders in cardiac transplant recipients are multiclonal lymphomas. Lancet. 1984;2(8401):489–93.PubMedCrossRefGoogle Scholar
  715. 715.
    Cleary ML, Nalesnik MA, Shearer WT, Sklar J. Clonal analysis of transplant-associated lymphoproliferations based on the structure of the genomic termini of the Epstein-Barr virus. Blood. 1988;72(1):349–52.PubMedGoogle Scholar
  716. 716.
    Weintraub J, Warnke RA. Lymphoma in cardiac allotransplant recipients. Clinical and histological features and immunological phenotype. Transplantation. 1982;33(4):347–51.PubMedCrossRefGoogle Scholar
  717. 717.
    Robertson L, Rice L, Riggs SA. Lymphomas after cardiac transplantation: Houston experience and successful therapy. Blood. 1990;76:369a.Google Scholar
  718. 718.
    Manning KR, Powell BL, Peacock JE. Effective combination chemotherapy for non-Hodgkin’s lymphoma after cardiac transplant. Blood. 1991;78:468a.Google Scholar
  719. 719.
    Lien YH, Schroter GP, Weil 3rd R, Robinson WA. Complete remission and possible immune tolerance after multidrug combination chemotherapy for cyclosporine-related lymphoma in a renal transplant recipient with acute pancreatitis. Transplantation. 1991;52(4):739–42.PubMedCrossRefGoogle Scholar
  720. 720.
    Chadburn A, Chen JM, Hsu DT. The morphological and molecular genetic categories of posttransplantation lymphoproliferatived disorders are clinically relevant. Cancer. 1998;82:1978–87.PubMedCrossRefGoogle Scholar
  721. 721.
    Wu H, Wasik MA, Przybylski G, et al. Hepatosplenic gamma-delta T-cell lymphoma as a late-onset posttransplant lymphoproliferative disorder in renal transplant recipients. Am J Clin Pathol. 2000;113(4):487–96.PubMedCrossRefGoogle Scholar
  722. 722.
    van Gorp J, Doornewaard H, Verdonck LF, Klopping C, Vos PF, van den Tweel JG. Posttransplant T-cell lymphoma. Report of three cases and a review of the literature. Cancer. 1994;73(12):3064–72.PubMedCrossRefGoogle Scholar
  723. 723.
    Hanson MN, Morrison VA, Peterson BA, et al. Posttransplant T-cell lymphoproliferative disorders–an aggressive, late complication of solid-organ transplantation. Blood. 1996;88(9):3626–33.PubMedGoogle Scholar
  724. 724.
    Garvin AJ, Self S, Sahovic EA, Stuart RK, Marchalonis JJ. The occurrence of a peripheral T-cell lymphoma in a chronically immunosuppressed renal transplant patient. Am J Surg Pathol. 1988;12(1):64–70.PubMedCrossRefGoogle Scholar
  725. 725.
    Dockrell DH, Strickler JG, Paya CV. Epstein-Barr virus-induced T cell lymphoma in solid organ transplant recipients. Clin Infect Dis. 1998;26(1):180–2.PubMedCrossRefGoogle Scholar
  726. 726.
    Lin WC, Moore JO, Mann KP, Traweek ST, Smith C. Post transplant CD8+ gammadelta T-cell lymphoma associated with human herpes virus-6 infection. Leuk Lymphoma. 1999;33(3–4): 377–84.PubMedGoogle Scholar
  727. 727.
    Euvrard S, Noble CP, Kanitakis J, et al. Brief report: successive occurrence of T-cell and B-cell lymphomas after renal transplantation in a patient with multiple cutaneous squamous-cell carcinomas. N Engl J Med. 1992;327(27):1924–6.PubMedCrossRefGoogle Scholar
  728. 728.
    Wirnsberger GH, Ratschek M, Dimai HP, Holzer H, Mandal AK. Post-transplantation lymphoproliferative disorder of the T-cell/B-cell type: an unusual manifestation in a renal allograft. Oncol Rep. 1999;6(1):29–32.PubMedGoogle Scholar
  729. 729.
    Mukai HY, Kojima H, Suzukawa K, et al. Nasal natural killer cell lymphoma in a post-renal transplant patient. Transplantation. 2000;69(7):1501–3.PubMedCrossRefGoogle Scholar
  730. 730.
    Wotherspoon AC, Diss TC, Pan L, Singh N, Whelan J, Isaacson PG. Low grade gastric B-cell lymphoma of mucosa associated lymphoid tissue in immunocompromised patients. Histopathology. 1996;28(2):129–34.PubMedCrossRefGoogle Scholar
  731. 731.
    Le Meur Y, Pontoizeau-Potelune N, Jaccard A, Paraf F, Leroux-Robert C. Regression of a gastric lymphoma of mucosa-associated lymphoid tissue after eradication of Helicobacter pylori in a kidney graft recipient. Am J Med. 1999;107(5):530.PubMedGoogle Scholar
  732. 732.
    Hsi ED, Singleton TP, Swinnen L, Dunphy CH, Alkan S. Mucosa-associated lymphoid tissue-type lymphomas occurring in post-transplantation patients. Am J Surg Pathol. 2000;24(1):100–6.PubMedCrossRefGoogle Scholar
  733. 733.
    Semakula B, Rittenbach JV, Wang J. Hodgkin lymphoma-like posttransplantation lymphoproliferative disorder. Arch Pathol Lab Med. 2006;130(4):558–60.PubMedGoogle Scholar
  734. 734.
    Gentile TC, Hadlock KG, Uner AH, et al. Large granular lymphocyte leukaemia occurring after renal transplantation. Br J Haematol. 1998;101(3):507–12.PubMedCrossRefGoogle Scholar
  735. 735.
    Papadaki HA, Stefanaki K, Kanavaros P, et al. Epstein-Barr virus-associated high-grade anaplastic plasmacytoma in a renal transplant patient. Leuk Lymphoma. 2000;36(3–4):411–5.PubMedCrossRefGoogle Scholar
  736. 736.
    Grey M, Townsend N, Lappin D, et al. IgA myeloma of donor origin arising 7 years after allogeneic renal transplant. Br J Haematol. 2000;108(3):592–4.PubMedCrossRefGoogle Scholar
  737. 737.
    Ducloux D, Carron P, Racadot E, et al. T-cell immune defect and B-cell activation in renal transplant recipients with monoclonal gammopathies. Transpl Int. 1999;12(4):250–3.PubMedCrossRefGoogle Scholar
  738. 738.
    Yousem SA, Randhawa P, Locker J, et al. Posttransplant lymphoproliferative disorders in heart-lung transplant recipients: primary presentation in the allograft. Hum Pathol. 1989;20(4):361–9.PubMedCrossRefGoogle Scholar
  739. 739.
    Spiro IJ, Yandell DW, Li C, et al. Brief report: lymphoma of donor origin occurring in the porta hepatis of a transplanted liver. N Engl J Med. 1993;329(1):27–9.PubMedCrossRefGoogle Scholar
  740. 740.
    Leblond V, Sutton L, Dorent R, et al. Lymphoproliferative disorders after organ transplantation: a report of 24 cases observed in a single center. J Clin Oncol. 1995;13(4):961–8.PubMedGoogle Scholar
  741. 741.
    Hjelle B, Evans-Holm M, Yen TS, Garovoy M, Guis M, Edman JC. A poorly differentiated lymphoma of donor origin in a renal allograft recipient. Transplantation. 1989;47(6):945–8.PubMedCrossRefGoogle Scholar
  742. 742.
    Miller Jr WT, Siegel SG, Montone KT. Posttransplantation lymphoproliferative disorder: changing manifestations of disease in a renal transplant population. Crit Rev Diagn Imaging. 1997;38(6): 569–85.PubMedGoogle Scholar
  743. 743.
    Weissmann DJ, Ferry JA, Harris NL, Louis DN, Delmonico F, Spiro I. Posttransplantation lymphoproliferative disorders in solid organ recipients are predominantly aggressive tumors of host origin. Am J Clin Pathol. 1995;103(6):748–55.PubMedGoogle Scholar
  744. 744.
    Meduri G, Fromentin L, Vieillefond A, Fries D. Donor-related non-Hodgkin’s lymphoma in a renal allograft recipient. Transplant Proc. 1991;23(5):2649.PubMedGoogle Scholar
  745. 745.
    Lucas KG, Pollok KE, Emanuel DJ. Post-transplant EBV induced lymphoproliferative disorders. Leuk Lymphoma. 1997;25(1–2):1–8.PubMedGoogle Scholar
  746. 746.
    Gambacorta M, Bonacina E, Falini B, Sabattini E, Pileri S. Malignant lymphoma in the recipient of a heart transplant from a donor with malignant lymphoma. Lymphoma transplantation or de novo disease? Transplantation. 1991;51(4):920–2.PubMedCrossRefGoogle Scholar
  747. 747.
    Cheung AN, Chan AC, Chung LP, Chan TM, Cheng IK, Chan KW. Post-transplantation lymphoproliferative disorder of donor origin in a sex-mismatched renal allograft as proven by chromosome in situ hybridization. Mod Pathol. 1998;11(1):99–102.PubMedCrossRefGoogle Scholar
  748. 748.
    Capello D, Rossi D, Gaidano G. Post-transplant lymphoproliferative disorders: molecular basis of disease histogenesis and pathogenesis. Hematol Oncol. 2005;23(2):61–7.PubMedCrossRefGoogle Scholar
  749. 749.
    Matas AJ, Simmons RL, Najarian JS. Chronic antigenic stimulation, herpesvirus infection, and cancer in transplant recipients. Lancet. 1975;1(7919):1277–9.PubMedCrossRefGoogle Scholar
  750. 750.
    Anderson JL, Fowles RE, Bieber CP, Stinson EB. Idiopathic cardiomyopathy, age, and suppressor-cell dysfunction as risk determinants of lymphoma after cardiac transplantation. Lancet. 1978;2(8101):1174–7.PubMedCrossRefGoogle Scholar
  751. 751.
    Filipovich AH, Mathur A, Kamat D. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 1992;52(Suppl):5465S–7S.PubMedGoogle Scholar
  752. 752.
    Fischer A, Blanche S, Le Bidois J, et al. Anti-B-cell monoclonal antibodies in the treatment of severe B-cell lymphoproliferative syndrome following bone marrow and organ transplantation. N Engl J Med. 1991;324(21):1451–6.PubMedCrossRefGoogle Scholar
  753. 753.
    Shapiro RS, McClain K, Frizzera G, et al. Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood. 1988;71(5):1234–43.PubMedGoogle Scholar
  754. 754.
    Suthanthiran M, Strom TB. Renal transplantation. N Engl J Med. 1994;331(6):365–76.PubMedCrossRefGoogle Scholar
  755. 755.
    Lipinski M, Tursz T, Kreis H, Finale Y, Amiel JL. Dissociation of natural killer cell activity and antibody-dependent cell-mediated cytotoxicity in kidney allograft recipients receiving high-dose immunosuppressive therapy. Transplantation. 1980;29(3):214–8.PubMedCrossRefGoogle Scholar
  756. 756.
    Tosato G, Seamon KB, Goldman ND, et al. Monocyte-derived human B-cell growth factor identified as interferon-beta 2 (BSF-2, IL-6). Science. 1988;239(4839):502–4.PubMedCrossRefGoogle Scholar
  757. 757.
    Strauch B, Andrews LL, Siegel N, Miller G. Oropharyngeal excretion of Epstein-Barr virus by renal transplant recipients and other patients treated with immunosuppressive drugs. Lancet. 1974;1(7851):234–7.PubMedCrossRefGoogle Scholar
  758. 758.
    Savoie A, Perpete C, Carpentier L, Joncas J, Alfieri C. Direct correlation between the load of Epstein-Barr virus-infected lymphocytes in the peripheral blood of pediatric transplant patients and risk of lymphoproliferative disease. Blood. 1994;83(9):2715–22.PubMedGoogle Scholar
  759. 759.
    Riddler SA, Breinig MC, McKnight JL. Increased levels of circulating Epstein-Barr virus (EBV)-infected lymphocytes and decreased EBV nuclear antigen antibody responses are associated with the development of posttransplant lymphoproliferative disease in solid-organ transplant recipients. Blood. 1994;84(3):972–84.PubMedGoogle Scholar
  760. 760.
    Randhawa PS, Jaffe R, Demetris AJ, et al. Expression of Epstein-Barr virus-encoded small RNA (by the EBER-1 gene) in liver specimens from transplant recipients with post-transplantation lymphoproliferative disease. N Engl J Med. 1992;327(24):1710–4.PubMedCrossRefGoogle Scholar
  761. 761.
    Nagington J, Gray J. Cyclosporin A immunosuppression, Epstein-Barr antibody, and lymphoma. Lancet. 1980;1(8167):536–7.PubMedCrossRefGoogle Scholar
  762. 762.
    Henle W, Henle G. Epstein-Barr virus-specific serology in immunologically compromised individuals. Cancer Res. 1981;41(11 Pt 1): 4222–5.PubMedGoogle Scholar
  763. 763.
    Frank D, Cesarman E, Liu YF, Michler RE, Knowles DM. Posttransplantation lymphoproliferative disorders frequently contain type A and not type B Epstein-Barr virus. Blood. 1995;85(5): 1396–403.PubMedGoogle Scholar
  764. 764.
    Ho M, Jaffe R, Miller G, et al. The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation. 1988;45(4):719–27.PubMedCrossRefGoogle Scholar
  765. 765.
    Walker RC, Paya CV, Marshall WF, et al. Pretransplantation seronegative Epstein-Barr virus status is the primary risk factor for posttransplantation lymphoproliferative disorder in adult heart, lung, and other solid organ transplantations. J Heart Lung Transplant. 1995;14(2):214–21.PubMedGoogle Scholar
  766. 766.
    Alfieri C, Tanner J, Carpentier L, et al. Epstein-Barr virus transmission from a blood donor to an organ transplant recipient with recovery of the same virus strain from the recipient’s blood and oropharynx. Blood. 1996;87(2):812–7.PubMedGoogle Scholar
  767. 767.
    Schwab M, Boswald M, Korn K, Ruder H. Epstein-Barr virus in pediatric patients after renal transplantation. Clin Nephrol. 2000;53(2):132–9.PubMedGoogle Scholar
  768. 768.
    Young L, Alfieri C, Hennessy K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 1989;321(16): 1080–5.PubMedCrossRefGoogle Scholar
  769. 769.
    Crawford DH, Thomas JA, Janossy G, et al. Epstein Barr virus nuclear antigen positive lymphoma after cyclosporin A treatment in patient with renal allograft. Lancet. 1980;1(8182):1355–6.PubMedCrossRefGoogle Scholar
  770. 770.
    Hoon V, Fasy TM, Kheiri S, et al. Case report: fatal lymphoproliferative disease seven weeks after liver transplantation. Mt Sinai J Med. 1994;61(1):72–6.PubMedGoogle Scholar
  771. 771.
    Ho M, Miller G, Atchison RW, et al. Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: the role of primary infection. J Infect Dis. 1985;152(5):876–86.PubMedCrossRefGoogle Scholar
  772. 772.
    Berg LC, Copenhaver CM, Morrison VA, et al. B-cell lymphoproliferative disorders in solid-organ transplant patients: detection of Epstein-Barr virus by in situ hybridization. Hum Pathol. 1992;23(2):159–63.PubMedCrossRefGoogle Scholar
  773. 773.
    Frias C, Lauzurica R, Vaquero M, Ribera JM. Detection of Epstein-Barr virus in posttransplantation T cell lymphoma in a kidney transplant recipient: case report and review. Clin Infect Dis. 2000;30(3):576–8.PubMedCrossRefGoogle Scholar
  774. 774.
    Rooney CM, Rickinson AB, Moss DJ, Lenoir GM, Epstein MA. Paired Epstein-Barr virus-carrying lymphoma and lymphoblastoid cell lines from Burkitt’s lymphoma patients: comparative sensitivity to non-specific and to allo-specific cytotoxic responses in vitro. Int J Cancer. 1984;34(3):339–48.PubMedCrossRefGoogle Scholar
  775. 775.
    Gaston JS, Rickinson AB, Epstein MA. Epstein-Barr-virus-specific T-cell memory in renal-allograft recipients under long-term immunosuppression. Lancet. 1982;1(8278):923–5.PubMedCrossRefGoogle Scholar
  776. 776.
    Crawford DH, Sweny P, Edwards JM, Janossy G, Hoffbrand AV. Long-term T-cell-mediated immunity to Epstein-Barr virus in renal-allograft recipients receiving cyclosporin A. Lancet. 1981;1(8210):10–2.PubMedCrossRefGoogle Scholar
  777. 777.
    Bird AG, McLachlan SM. Cyclosporin A and Epstein-Barr virus. Lancet. 1980;2(8191):418.PubMedCrossRefGoogle Scholar
  778. 778.
    Cheeseman SH, Henle W, Rubin RH, et al. Epstein-Barr virus infection in renal transplant recipients. Effects of antithymocyte globulin and interferon. Ann Intern Med. 1980;93(1):39–42.PubMedGoogle Scholar
  779. 779.
    Martin PJ, Shulman HM, Schubach WH, et al. Fatal Epstein-Barr-virus-associated proliferation of donor B cells after treatment of acute graft-versus-host disease with a murine anti-T-cell antibody. Ann Intern Med. 1984;101(3):310–5.PubMedGoogle Scholar
  780. 780.
    Garnier JL, Blanc-Brunat N, Vivier G, Rousset F, Touraine JL. Interleukin-10 in Epstein-Barr virus-associated post-transplant lymphomas. Clin Transplant. 1999;13(4):305–12.PubMedCrossRefGoogle Scholar
  781. 781.
    Birkeland SA, Bendtzen K, Moller B, Hamilton-Dutoit S, Andersen HK. Interleukin-10 and posttransplant lymphoproliferative disorder after kidney transplantation. Transplantation. 1999;67(6):876–81.PubMedCrossRefGoogle Scholar
  782. 782.
    Cen H, Williams PA, McWilliams HP, Breinig MC, Ho M, McKnight JL. Evidence for restricted Epstein-Barr virus latent gene expression and anti-EBNA antibody response in solid organ transplant recipients with posttransplant lymphoproliferative disorders. Blood. 1993;81(5):1393–403.PubMedGoogle Scholar
  783. 783.
    Rowe DT, Rowe M, Evan GI, Wallace LE, Farrell PJ, Rickinson AB. Restricted expression of EBV latent genes and T-lymphocyte-detected membrane antigen in Burkitt’s lymphoma cells. EMBO J. 1986;5(10):2599–607.PubMedGoogle Scholar
  784. 784.
    Gregory CD, Murray RJ, Edwards CF, Rickinson AB. Downregulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt’s lymphoma underlies tumor cell escape from virus-specific T cell surveillance. J Exp Med. 1988;167(6):1811–24.PubMedCrossRefGoogle Scholar
  785. 785.
    Tey SK, Marlton PV, Hawley CM, Norris D, Gill DS. Post-transplant hepatosplenic T-cell lymphoma successfully treated with HyperCVAD regimen. Am J Hematol. 2008;83(4): 330–3.PubMedCrossRefGoogle Scholar
  786. 786.
    Frey NV, Tsai DE. The management of posttransplant lymphoproliferative disorder. Med Oncol. 2007;24(2):125–36.PubMedCrossRefGoogle Scholar
  787. 787.
    Blaes AH, Peterson BA, Bartlett N, Dunn DL, Morrison VA. Rituximab therapy is effective for posttransplant lymphoproliferative disorders after solid organ transplantation: results of a phase II trial. Cancer. 2005;104(8):1661–7.PubMedCrossRefGoogle Scholar
  788. 788.
    Rees L, Thomas A, Amlot PL. Disappearance of an Epstein-Barr virus-positive post-transplant plasmacytoma with reduction of immunosuppression. Lancet. 1998;352(9130):789.PubMedCrossRefGoogle Scholar
  789. 789.
    Hanto DW, Frizzera G, Gajl-Peczalska K. Acyclovir therapy of Epstein-Barr virus-induced posttransplant lymphoproliferative disease. Transplant Proc. 1985;17:89–92.Google Scholar
  790. 790.
    Pirsch JD, Stratta RJ, Sollinger HW, et al. Treatment of severe Epstein-Barr virus-induced lymphoproliferative syndrome with ganciclovir: two cases after solid organ transplantation. Am J Med. 1989;86(2):241–4.PubMedCrossRefGoogle Scholar
  791. 791.
    Blanche S, Le Deist F, Veber F, et al. Treatment of severe Epstein-Barr virus-induced polyclonal B-lymphocyte proliferation by anti-B-cell monoclonal antibodies. Two cases after HLA-mismatched bone marrow transplantation. Ann Intern Med. 1988;108(2):199–203.PubMedGoogle Scholar
  792. 792.
    Lazarovits AI, Tibbles LA, Grant DR, et al. Anti-B cell antibodies for the treatment of monoclonal Epstein-Barr virus-induced lymphoproliferative syndrome after multivisceral transplantation. Clin Invest Med. 1994;17(6):621–5.PubMedGoogle Scholar
  793. 793.
    Reynaud-Gaubert M, Stoppa AM, Gaubert J, Thomas P, Fuentes P. Anti-CD20 monoclonal antibody therapy in Epstein-Barr Virus-associated B cell lymphoma following lung transplantation. J Heart Lung Transplant. 2000;19(5):492–5.PubMedCrossRefGoogle Scholar
  794. 794.
    Milpied N, Vasseur B, Parquet N, et al. Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Ann Oncol. 2000;11 Suppl 1:113–6.PubMedCrossRefGoogle Scholar
  795. 795.
    Senderowicz AM, Vitetta E, Headlee D, et al. Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med. 1997;126(11):882–5.PubMedGoogle Scholar
  796. 796.
    Li PK, Tsang K, Szeto CC, et al. Effective treatment of high-grade lymphoproliferative disorder after renal transplantation using autologous lymphocyte activated killer cell therapy. Am J Kidney Dis. 1998;32(5):813–9.PubMedCrossRefGoogle Scholar
  797. 797.
    Rooney CM