Molecular Genetics of Myeloma



Multiple myeloma (MM) is a universally fatal disease characterized by the accumulation of malignant plasma cells in the bone marrow [1]. It accounts for 2 % of all cancer deaths and 15 % of all hematologic malignancies, with about 13,000 deaths per year in the USA [2]. In most cases of MM, it is believed to be preceded by a pre-malignant clonal population of plasma cells called monoclonal gammopathy of undetermined significance (MGUS), which is the most common lymphoid tumor in humans [3]. Despite some evidence of familial clustering, the effects of genetic background and environment remain to be clarified. Some early reports of MM risk genes are just emerging.


Multiple myeloma Primary and secondary genetic events Single-nucleotide polymorphism Microarray gene expression 


  1. 1.
    Kubagawa H, Vogler LB, Capra JD, et al. Studies on the clonal origin of multiple myeloma. Use of individually specific (idiotype) antibodies to trace the oncogenic event to its earliest point of expression in B-cell differentiation. J Exp Med. 1979;150:792–807.PubMedCrossRefGoogle Scholar
  2. 2.
    Altekruse SF, Kosary CL, Krapcho M et al. (eds). 2010 SEER Cancer Statistics Review; 1975–2007.Google Scholar
  3. 3.
    Landgren O, Kyle RA, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Barlogie B, Epstein J, Selvanayagam P, et al. Plasma cell-myeloma-new biological insights and advances in therapy. Blood. 1989;73:685–79.Google Scholar
  5. 5.
    Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;12:2210–21.CrossRefGoogle Scholar
  6. 6.
    Van Ness B. Defining the genetic chaos in myeloma. Blood. 2002;99:1504.PubMedCrossRefGoogle Scholar
  7. 7.
    Dalton WS. The tumor microenvironment: focus on myeloma. Cancer Treat Rev. 2003;1:11–9.CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Barlogie B, Shaughnessy Jr JD. The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia. 2009;23:1941–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23:6333–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106:296–303.PubMedCrossRefGoogle Scholar
  11. 11.
    Kotani A, Kakazu N, Tsuruyama T, et al. Activation-induced ­cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proc Natl Acad Sci USA. 2007;104:1616–20.PubMedCrossRefGoogle Scholar
  12. 12.
    De Vos J, Couderc G, Tarte K, et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood. 2001;98:771–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12:131–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12:115–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Shimizu K, Goldfarb M, Suard Y, et al. Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA. 1983;80:2112–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu P, Leong T, Quam L, et al. Activating mutations of N- and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial. Blood. 1996;88:2699–706.PubMedGoogle Scholar
  17. 17.
    Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and ­primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18:212–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Rasmussen T, Kuehl M, Lodahl M, et al. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition some plasma cell tumors. Blood. 2005;105:317–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22:2280–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Rowley M, Van Ness B. Activation of N-ras and K-ras induced by interleukin-6 in a myeloma cell line: Implications for disease progression and therapeutic response. Oncogene. 2002;21:8769–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Chesi M, Brents LA, Ely SA, et al. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood. 2001;97:729–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Chng WJ, Price-Troska T, Gonzalez-Paz N, et al. Clinical significance of TP53 mutation in myeloma. Leukemia. 2007;21:582–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Neri A, Baldini L, Trecca D, et al. p53 gene mutations in multiple myeloma are associated with advanced forms of malignancy. Blood. 1993;81:128–35.PubMedGoogle Scholar
  25. 25.
    Fonseca R, Harrington D, Oken MM, et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. Cancer Res. 2002;62:715–20.PubMedGoogle Scholar
  26. 26.
    Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhan F, Hardin J, Kordsmeier B, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood. 2002;99:1745–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Croonquist P, Linden M, Zhao F, Van Ness B. Gene profiling of a myeloma cell line reveals similarities and unique signatures among IL-6 response, N-ras activating mutations and co-culture with bone marrow stromal cells. Blood. 2003;102:2581–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Corre J, Mahtouk K, Attal M, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia. 2007;21:1079–88.PubMedGoogle Scholar
  30. 30.
    Hedvat CV, Comenzo RL, Teruya-Feldstein J, et al. Insights into extramedullary tumour cell growth revealed by expression profiling of human plasmacytomas and multiple myeloma. Br J Haematol. 2003;122:728–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Hose D, Moreaux J, Meissner T, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114:128–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Reiland J, Sanderson RD, Waguespack M, et al. Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem. 2004;279:8047–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Bret C, Hose D, Reme T, et al. Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol. 2009;145:350–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004;103:3148–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103:689–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Moreaux J, Cremer FW, Reme T, et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood. 2005;106:1021–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Salmon SE, Durie BG. Clinical staging and new therapeutic approaches in multiple myeloma. Recent Results Cancer Res. 1978;65:12–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Greipp PR. San Miguel J, Durie BG et al. International staging ­system for multiple myeloma. J Clin Oncol. 2005;23:3412–20.PubMedCrossRefGoogle Scholar
  39. 39.
    Bartl R. Histologic classification and staging of multiple myeloma. Hematol Oncol. 1988;6:107–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Greipp PR, Kumar S. Plasma cell labeling index. Methods Mol Med. 2005;113:25–35.PubMedGoogle Scholar
  42. 42.
    Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112:4017–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Shaughnessy Jr JD, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–84.PubMedCrossRefGoogle Scholar
  44. 44.
    Decaux O, Lode L, Magrangeas F, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the intergroupe francophone du myelome. J Clin Oncol. 2008;26:4798–805.PubMedCrossRefGoogle Scholar
  45. 45.
    Anguiano A, Tuchman SA, Chaitanya A, et al. Gene expression profiles of tumor biology provide a novel approach to prognosis and may guide the selection of therapeutic targets in multiple myeloma. J Clin Oncol. 2009;27:4197–203.PubMedCrossRefGoogle Scholar
  46. 46.
    Kofler R, Schmidt S, Kofler A, et al. Mechanisms of steroid action and resistance in inflammation: Resistance to glucacorticoid-induced apoptosis in lymphoblastic leukemia. J Endocrinol. 2003;178:19–27.PubMedCrossRefGoogle Scholar
  47. 47.
    Chauhan D, Auclair D, Robinson EK, et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene. 2002;21:1346–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA. 2002;99:14374–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101:2377–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Chauhan D, Li G, Auclair D, et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood. 2003;101:3606–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Sukhdeo K, Mani M, Zhang Y, et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA. 2007;104:7516–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Duus J, Bahar HI, Venkataraman G, et al. Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma. 2006;47:1369–78.PubMedCrossRefGoogle Scholar
  53. 53.
    Burington B, Barlogie B, Zhan F, et al. Tumor cell gene expression changes following short-term in vivo exposure to single agent chemotherapeutics are related to survival in multiple myeloma. Clin Cancer Res. 2008;14:4821–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Shaughnessy Jr JD, Qu P, Edmondson P et al. Changes in the expression of proteasome genes in tumore cells following short-term proteasome inhibitor therapy predicts survival in multiple myeloma treated with bortezomib-containing multi-agent chemotherapy. Blood (ASH Annual Meeting Abstracts) 2008;12:733.Google Scholar
  55. 55.
    Ri M, Iida S, Nakashima T, et al. Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia. 2010;24(8):1506–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Bartel D. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  57. 57.
    Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358:502–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Löffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110:1330–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105:12885–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou Y, Chen L, Barlogie B, et al. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA. 2010;107:7904–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–51.PubMedCrossRefGoogle Scholar
  63. 63.
    Relling MV, Evans WE. Moving towards individualized medicine with pharmacogenomics. Nature. 2004;429:464–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Saarikoski ST, et al. Combined effect of polymorphic GST genes on individual susceptibility to lung cancer. Int J Cancer. 1998;77:516–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Dasgupta RK, et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood. 2003;102:2345–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Ness B, Ramos C, Haznadar M, et al. Genomic variation in myeloma: Design, content, and initial application of the Bank on a cure SNP panel to analysis of survival. BMC Med. 2008;6:26.PubMedCrossRefGoogle Scholar
  67. 67.
    Durie BG, Van Ness B, Ramos C, et al. DNA SNPs in myeloma: genetic polymorphisms of EPHX1, Gsk3beta, TNFSF8 and myeloma cell DKK-1 expression linked to bone disease in myeloma. Leukemia. 2009;10:1913–9.CrossRefGoogle Scholar
  68. 68.
    Johnson D, Walker CS, Ross FM, et al. Genetic factors underlying the risk of thalidomide and vincristine related neuropathy in multiple myeloma patients. J Clin Oncol. 2011;29(7):797–804.PubMedCrossRefGoogle Scholar
  69. 69.
    Corthals SL, Sonneveld P, Johnsopn DC et al. Genetic factors underlying the risk of bortezomib induced peripheral neuropathy in multiple myeloma patients. Haematologica; first published on Jul 26, 2011 as doi: 10.3324/haematol.2011.041434.
  70. 70.
    Potter M, Boye C. Induction of plasma cell neoplasms in strain BALB/c mice with mineral oil and mineral oil adjuvants. Nature. 1962;193:1086–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Pilarski LM, Hipperson G, Seeberger K, Pruski E, Coupland RW, Belch AR. Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. Blood. 2000;233:566–9.Google Scholar
  72. 72.
    Yaccoby S, Barlogie B, Epstein J. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 1998;92:2908–13.PubMedGoogle Scholar
  73. 73.
    Chesi M, Robbiani DF, Sebag M, et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell. 2008;13:167–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Prendergast GC. Mechanisms of apoptosis by c-Myc. Oncogene. 1999;18:2967–87.PubMedCrossRefGoogle Scholar
  75. 75.
    Adams JM, Harris AW, Strasser A, et al. Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene. 1999;18:5268–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Rabbitts TH, Appert A, Chung G, et al. Mouse models of human chromosomal translocations and approaches to cancer therapy. Blood Cells Mol Dis. 2001;27:249–59.PubMedCrossRefGoogle Scholar
  77. 77.
    Janz S, Potter M. personal communication.Google Scholar
  78. 78.
    Cheung W, Van Ness B. Distinct Il-6 signal transduction leads to growth arrest and death in B cells or growth promotion and survival in myeloma cells. Leukemia. 2002;16:1182–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Gauthier ER, Piché L, Lemieux G, Lemieux R. Role of bcl-X(L) in the control of apotosis in murine myeloma cells. Cancer Res. 1996;56:1451–6.PubMedGoogle Scholar
  80. 80.
    Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999;10:105–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Tu Y, Renner S, Xu F, et al. BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res. 1998;58:256–62.PubMedGoogle Scholar
  82. 82.
    Eischen CM, Packham G, Nip J, et al. Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene. 2001;20:6983–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Fang W, Mueller DL, Pennell CA, et al. Frequent aberrant immunoglobulin gene rearrangements in pro-B cells revealed by a bcl-xl transgene. Immunity. 1996;4:291–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Fang W, Weintraub BC, Dunlap B, et al. Self-reactive B lymphocytes overexpressing Bcl-xL escape negative selection and are tolerized by clonal anergy and receptor editing. Immunity. 1998;9:35–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Grillot DA, Merino R, Pena JC, et al. bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J Exp Med. 1996;183:381–91.PubMedCrossRefGoogle Scholar
  86. 86.
    Cheung WC, Kim JS, Linden M, et al. Novel targeted deregulation of c-myc and bcl-xL combine to cause plasma cell malignancies in mice. J Clin Invest. 2004;113:1763–73.PubMedGoogle Scholar
  87. 87.
    Lee E, Fitzgerald M, Liu R, et al. Activity of the Investigational Proteasome Inhibitor MLN9708 in Mouse Models of B-cell and Plasma Cell Malignancies. Clin Cancer Res. 2011;17(23):7313–23.Google Scholar
  88. 88.
    Tiedemann RE, Zhu YX, Schmidt J, et al. Kinome-wide RNAi studies in human multiple myeloma identify vulnerable kinase targets, including a lymphoid-restricted kinase, GRK6. Blood. 2010;115:1594–604.PubMedCrossRefGoogle Scholar
  89. 89.
    International Human Genome Sequencing Consortium. Initial sequence and analysis of the human genome. Nature. 2001;409:860–922.CrossRefGoogle Scholar
  90. 90.
    Sawyer JR. Multicolor spectral karyotyping in multiple myeloma. Methods Mol Med. 2005;113:49–58.PubMedGoogle Scholar
  91. 91.
    Walker BA, Leone PE, Chiecchio L, et al. A compendium of myeloma-associated chromosomal copy number abnoirmalities and their prgonostic value. Blood 2010;116:e56–65.Google Scholar
  92. 92.
    Dickens NJ, Walker BA, Leone PE, et al. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clin Cancer Res. 2010;16:1856–64.PubMedCrossRefGoogle Scholar
  93. 93.
    Avet-Loiseau H, Li C, Mangrangeas F, et al. Prognostic significance of copy-number alternations in multiple myeloma. J Clin Oncol. 2009;27:4585–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Human Genetics, University of MinnesotaMinneapolisUSA

Personalised recommendations