Acute Promyelocytic Leukemia

  • Peter H. Wiernik
  • Robert E. Gallagher
  • Martin S. Tallman
Chapter

Abstract

Acute promyelocytic leukemia (APL) is designated M3 in the French-American-British (FAB) classification. Because of its unique clinical features and unique response to certain differentiation inducing agents, and because of our advanced understanding of the molecular biology of this leukemia, APL deserves to be presented and discussed in detail, apart from the other acute myeloid leukemias.

Keywords

All-trans retinoic acid Arsenic trioxide Translocation 15;17 Pseudotumor cerebri 

References

  1. 1.
    Hillestad L. Acute promyelocytic leukemia. Acta Med Scand. 1957;159:189.PubMedCrossRefGoogle Scholar
  2. 2.
    Stavem P. Acute hypergranular promyelocytic leukemia. Priority of discovery. Scand J Haematol. 1978;20:287.PubMedGoogle Scholar
  3. 3.
    Caen J, Mathe G, Xuan Chat L, Bernard J. Etude de la fibrinolyse au cours des hémopathies malignes. In: Transactions of the 6th Congress of the European Society of Hématology. Basel: Karger; 1957: 502Google Scholar
  4. 4.
    Bernard J, Mathe G, Boulay J, Ceoura B. La leucose aiguë à promyélocytes. Etude portant sur 20 observations. J Suisse Med. 1959;23:604.Google Scholar
  5. 5.
    Bernard J, Weil M, Boiron M, et al. Acute promyelocytic leukemia. Results of treatment with daunorubicin. Blood. 1973;41:489.PubMedGoogle Scholar
  6. 6.
    Golomb HM, Rowley JD, Vardiman J, et al. Partial deletion of long arm of chromosome 7. A specific abnormality in acute promyelocytic leukemia? Arch Intern Med. 1976;136:825.PubMedCrossRefGoogle Scholar
  7. 7.
    Rowley J, Golomb H, Dougherty C. 15/17 translocation: A consistent chromosomal change in acute promyelocytic leukemia. Lancet. 1977;1:549.PubMedCrossRefGoogle Scholar
  8. 8.
    Larson RA, Kondo K, Vardiman JW, et al. Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med. 1984;76:827.PubMedCrossRefGoogle Scholar
  9. 9.
    Kantarjian HM, Keating MJ, Walters RS, et al. Acute promyelocytic leukemia. M.D. Anderson Hospital experience. Am J Med. 1986;80:789.PubMedCrossRefGoogle Scholar
  10. 10.
    Stone RM, Maguire M, Goldberg MA, et al. Complete remission in acute promyelocytic leukemia despite persistence of abnormal bone marrow promyelocytes during induction therapy: Expertonce in 34 patients. Blood. 1988;71:690.PubMedGoogle Scholar
  11. 11.
    Brittan T, Selznick S, Collins S. Induction of differentiation of the human promyelocytic leukemic cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA. 1980;77:2936.CrossRefGoogle Scholar
  12. 12.
    Huang M-E, Ye Y-C, Chen S-R, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567.PubMedGoogle Scholar
  13. 13.
    Fenaux P, Chas tang C, Degas L. Treatment of newly diagnosed acute promyelocytic leukemia (APL) by a combination of alltrans retinoic acid (ATRA) and chemotherapy. Leukemia. 1994;8 Suppl 2:S42.PubMedGoogle Scholar
  14. 14.
    Chen GQ, Shi XG, Tang W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As203 exerts dose-dependent dual effects on APL cells. Blood. 1997;89:3345.PubMedGoogle Scholar
  15. 15.
    Wiernik PH. Acute promyelocytic leukemia: another pseudoleukemia? Blood. 1990;76:1675.PubMedGoogle Scholar
  16. 16.
    Degos L. Is acute promyelocytic leukemia a curable disease? Treatment strategy for a long-term survival. Leukemia. 1994;8:S6.PubMedGoogle Scholar
  17. 17.
    Bernard J. History of promyelocytic leukemia. Leukemia. 1994;8 Suppl 2:1.Google Scholar
  18. 18.
    Breitman TR, Collins SJ, Keene BR. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood. 1981;57:1000–4.PubMedGoogle Scholar
  19. 19.
    Huang M-e, Ye Y-c, Chen S-r, Chai J-r, Lu J-X, Lin Z, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.PubMedGoogle Scholar
  20. 20.
    Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science. 1990;249:1577–80.PubMedCrossRefGoogle Scholar
  21. 21.
    de The H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor Ë gene to a novel transcribed locus. Nature. 1990;347:558–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Longo L, Pandolfi P, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, et al. Rearrangements and aberrant expression of the retinoic acid receptor Ï gene in acute promyelocytic leukemias. J Exp Med. 1990;172:1571–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Petkovich M, Brand NJ, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987;330:444–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Giguere V, Ong ES, Segui P, Evans RM. Identification of a receptor for the morphogen retinoic acid. Nature. 1987;330:624–9.PubMedCrossRefGoogle Scholar
  25. 25.
    de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Kakizuka A, Miller Jr WH, Umesono K, Warrell Jr RP, Frankel SR, Murty VVVS, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell. 1991;66:663–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Pandolfi P, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F, et al. Structure and origin of the acute promyelocytic leukemia myl/RARa cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene. 1991;6:1285–92.PubMedGoogle Scholar
  28. 28.
    Chen Z, Brand N, Chen A, Chen S, Tong J, Wang Z, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-a locus due to a variant t(11;17) translocation associated with acute promyelocytic leukemia. EMBO J. 1993;12:1161–72.PubMedGoogle Scholar
  29. 29.
    Redner RL, Chen JD, Rush EA, Li H, Pollock SL. The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood. 2000;95:2683–90.PubMedGoogle Scholar
  30. 30.
    Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor a to NuMA, the nuclear mitotic apparatus protein by a variant translocation in acute promyelocytic leukemia. Nat Genet. 1997;17:109–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Arnould C, Philippe C, Bourdon V, Gregoire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor a in acute promyelocytic-like leukaemia. Hum Mol Genet. 1999;8:1741–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Catalano A, Dawson MA, Somana K, Opat S, Schwarer A, Campbell LJ, et al. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood. 2007;110(12):4073–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Kondo T, Mori A, Darmanin S, Hashino S, Tanaka J, Asaka M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica. 2008;93(9):1414–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene. 2001;20(49):7186–203.PubMedCrossRefGoogle Scholar
  35. 35.
    Scaglioni PP, Pandolfi PP. The theory of APL revisited. Curr Top Microbiol Immunol. 2007;313:85–100.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen GQ, Zhu J, Shi XG, Zhong HJ, Ni JH, Si GY, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of bcl-2 expression and alteration of PML-RARa/PML protein localization. Blood. 1996;88:1052–61.PubMedGoogle Scholar
  37. 37.
    Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89:3345–53.PubMedGoogle Scholar
  38. 38.
    Lanotte M, Martin-Thouvenin B, Najman S, Balerini P, Valensi F, Berger R. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood. 1991;77(5):1080–6.PubMedGoogle Scholar
  39. 39.
    Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, et al. Characterization of the continuous, differentiating myeloid leukemia cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979;54:713–33.PubMedGoogle Scholar
  40. 40.
    Breitman T, Selonick S, Collins S. Induction of differentiation of the human promyelocytic leukemic cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA. 1980;77:2936–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Kogan SC. Mouse models of acute promyelocytic leukemia. Curr Topics Microbiol Immunol. 2007;313:3–29.CrossRefGoogle Scholar
  42. 42.
    Nasr R, Guillemin MC, Ferhi O, Soilihi H, Peres L, Berthier C, et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med. 2008;14(12):1333–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A, et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia. 2009;23(8):1462–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood. 2009;114(27):5415–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.PubMedGoogle Scholar
  46. 46.
    Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld M, et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature. 1994;371:528–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, et al. Crystal structure of the RAR-g ligand binding domain bound to all-trans retinoic acid. Nature. 1995;378:681–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, et al. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev. 1999;13:3198–208.PubMedCrossRefGoogle Scholar
  49. 49.
    Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008;31(4):449–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Huq MD, Tsai NP, Khan SA, Wei LN. Lysine trimethylation of retinoic acid receptor-alpha: a novel means to regulate receptor function. Mol Cell Proteomics. 2007;6(4):677–88.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell. 1999;98(5):675–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.PubMedCrossRefGoogle Scholar
  54. 54.
    Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108(4):475–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463(7280):474–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Strahl BD, Allis CD. The language of covalent histone modification. Nature. 1998;403:41–5.Google Scholar
  57. 57.
    Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20(49):7223–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Borden KL. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? Biochim Biophys Acta. 2008;1783(11):2145–54.PubMedCrossRefGoogle Scholar
  59. 59.
    Daniel M, Koken M, Romagne O, Barbey S, Bazarbachi A, Stadler M, et al. PML protein expression in hematopoietic and acute promyleocytic leukemia cells. Blood. 1993;82:1858–67.PubMedGoogle Scholar
  60. 60.
    Terris B, Baldin V, Dubois S, Degott C, Flejou J-F, Henin D, et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 1995;55:1590–7.PubMedGoogle Scholar
  61. 61.
    Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci. 2010;6(1):51–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP. Role of SUMO-1-modified PML in nuclear body formation. Blood. 2000;95:2748–52.PubMedGoogle Scholar
  64. 64.
    Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol. 2008;10(5):547–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 2008;10(5):538–46.PubMedCrossRefGoogle Scholar
  66. 66.
    Reineke EL, Kao HY. Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci. 2009;5(4):366–76.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, et al. Role of PML in cell growth and the retinoic acid pathway. Science. 1998;279:1547–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene. 2008;27(48):6299–312.PubMedCrossRefGoogle Scholar
  69. 69.
    Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst. 2004;96(4):269–79.PubMedCrossRefGoogle Scholar
  70. 70.
    Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Borden KLB, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 1995;14:1532–41.PubMedGoogle Scholar
  72. 72.
    Slack JL, Willman CL, Andersen JW, Li Y-P, Viswanatha DS, Bloomfield CD, et al. Molecular analysis and clinical outcome of adult APL patients with the type V PML-RARa isoform: results from Intergroup protocol 0129. Blood. 2000;95:398–403.PubMedGoogle Scholar
  73. 73.
    Gu BW, Xiong H, Zhou Y, Chen B, Dong S, Yu ZY, et al. Variant-type PML-RARa fusion transcript in acute promyelocytic leukemia: use of a cryptic coding sequence from intron 2 of the RARa gene and identification of a new clinical subtype of retinoic acid therapy. Proc Natl Acad Sci USA. 2002;99:7640–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Reiter A, Saussele S, Grimwade D, Wiemels JL, Segal MR, Lafage-Pochitaloff M, et al. Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer. 2003;36(2):175–88.PubMedCrossRefGoogle Scholar
  75. 75.
    Gallagher RE, Willman CL, Slack JL, Andersen JW, Li YP, Viswanatha D, et al. Association of PML-RARa fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: An intergroup molecular study. Blood. 1997;90:1656–63.PubMedGoogle Scholar
  76. 76.
    Kane JR, Head DR, Balazs L, Hulshof MG, Motroni TA, Raimondi SC, et al. Molecular analysis of the PML/RAR alpha chimeric gene in pediatric acute promyelocytic leukemia. Leukemia. 1996;10(8):1296–302.PubMedGoogle Scholar
  77. 77.
    Guglielmi C, Martelli MP, Diverio D. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome: a cooperative Italian study on 196 cases. Br J Haematol. 1998;102:1035–10941.PubMedCrossRefGoogle Scholar
  78. 78.
    Alcalay M, Zangrilli D, Fagioli M, Pandolfi P, Mencarelli A, Lo Coco F, et al. Expression pattern of the RARa-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1992;89:4840–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Borrow J, Goddard AD, Gibbons B, Katz F, Swirsky D, Fioretos T, et al. Diagnosis of acute promyelocytic leukaemia by RT-PCR detection of PML-RARA and RARA-PML fusion transcripts. Br J Haematol. 1992;82:529–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Li YP, Andersen J, Zelent A, Rao S, Paietta E, Tallman MS, et al. RARa1/RARa2-PML mRNA expression in acute promyelocytic leukemia cells: A molecular and laboratory-clinical correlative study. Blood. 1997;90:306–12.PubMedGoogle Scholar
  81. 81.
    Walz C, Grimwade D, Saussele S, Lengfelder E, Hafelach C, Schnittger S, et al. Atypical mRNA fusions in PML-RARA positive, RARA-PML negative acute promyelocytic leukemia. Genes Chromosomes Cancer. 2010;49:471–9.PubMedGoogle Scholar
  82. 82.
    Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B, et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med. 2005;352(15):1529–38.PubMedCrossRefGoogle Scholar
  83. 83.
    Hasan SK, Mays AN, Ottone T, Ledda A, La Nasa G, Cattaneo C, et al. Molecular analysis of t(15;17) genomic breakpoints in ­secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood. 2008;112(8):3383–90.PubMedCrossRefGoogle Scholar
  84. 84.
    Mays AN, Osheroff N, Xiao Y, Wiemels JL, Felix CA, Byl JA, et al. Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood. 2010;115(2):326–30.PubMedCrossRefGoogle Scholar
  85. 85.
    McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Feusner J, et al. Prenatal origin of childhood acute myeloid leukemias harboring chromosomal rearrangements t(15;17) and inv(16). Blood. 2003;101(11):4640–1.PubMedCrossRefGoogle Scholar
  86. 86.
    Collins SJ. Acute promyelocytic leukemia: relieving repression induces remission. Blood. 1998;91(8):2631–3.PubMedGoogle Scholar
  87. 87.
    Lin RJ, Evans RM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell. 2000;5:821–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Onodera M, Kunisada T, Nishikawa S, Sakiyama Y, Matsumoto S, Nishikawa S. Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage. Oncogene. 1995;11:1291–8.PubMedGoogle Scholar
  89. 89.
    Du C, Redner RL, Cooke MP, Lavau C. Overexpression of wild-type retinoic acid receptor alpha (RARalpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARalpha-fusion genes. Blood. 1999;94:793–802.PubMedGoogle Scholar
  90. 90.
    Robertson K, Emami B, Collins S. Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood. 1992;80:1885–8.PubMedGoogle Scholar
  91. 91.
    Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L, et al. PML/RARa fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood. 2000;96:1531–7.PubMedGoogle Scholar
  92. 92.
    Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T, et al. Accelerated degradation of PML-retinoic acid receptor a (PML-RARA) oncoprotein by all-trans retinoic acid in acute promyelocytic leukemia: Possible role of the proteasome pathway. Cancer Res. 1996;56:2945–8.PubMedGoogle Scholar
  93. 93.
    Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor a (RARa) and oncogenic RARa fusion proteins. Proc Natl Acad Sci USA. 1999;96:14807–12.PubMedCrossRefGoogle Scholar
  94. 94.
    Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature. 1998;391:811–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, et al. Fusion proteins of the retinoic acid receptor-a recruit histone deacetylase in promyelocytic leukemia. Nature. 1998;391:815–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARa underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood. 1998;91:2634–42.PubMedGoogle Scholar
  97. 97.
    Di Croce L, Raker VA, Corsaro M, Faxi F, Fanelli M, Faretta M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295:1079–82.PubMedCrossRefGoogle Scholar
  98. 98.
    Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG, et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol. 2006;26(4):1288–96.PubMedCrossRefGoogle Scholar
  99. 99.
    Villa R, Morey L, Raker VA, Buschbeck M, Gutierrez A, De Santis F, et al. The methyl-CpG binding protein MBD1 is required for PML-RAR alpha function. Proc Natl Acad Sci USA. 2006;103(5):1400–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell. 2007;11(6):513–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M, et al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol. 2008;28(19):5912–23.PubMedCrossRefGoogle Scholar
  102. 102.
    Kogan SC, Hong SH, Shultz DB, Privalsky ML, Bishop JM. Leukemia initiated by PMLRARa: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood. 2000;95:1541–50.PubMedGoogle Scholar
  103. 103.
    Matsushita H, Scaglioni PP, Bhaumik M, Rego EM, Cai LF, Majid SM, et al. In vivo analysis of the role of aberrant histone deacetylase recruitment and RAR alpha blockade in the pathogenesis of acute promyelocytic leukemia. J Exp Med. 2006;203(4):821–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, et al. Forced retinoic acid receptor a homodimers prime mice for APL-like leukemia. Cancer Cell. 2006;9:81–94.PubMedCrossRefGoogle Scholar
  105. 105.
    Kwok C, Zeisig BB, Dong S, So CW. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell. 2006;9(2):95–108.PubMedCrossRefGoogle Scholar
  106. 106.
    Licht JD. Reconstructing a disease: what essential features of the retinoic acid receptor fusion oncoproteins generate actue promyelocytic leukemia? Cancer Cell. 2006;9:73–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Koken MHM, Reid A, Quignon F, Chelbi-Alix MK, Dong S, Chen S-J, et al. Leukaemia-associated RARa fusion partners, PML and PLZF, heterodimerize and co-localize onto nuclear bodies. Proc Natl Acad Sci USA. 1997;94:10255–60.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhu J, Zhou J, Peres L, Riaucoux F, Honore N, Kogan SC, et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell. 2005;7:143–53.PubMedCrossRefGoogle Scholar
  109. 109.
    Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med. 2001;193:521–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Koken MHM, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 1994;13:1073–83.PubMedGoogle Scholar
  111. 111.
    Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell. 2007;12(1):36–51.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhu J, Nasr R, Peres L, Riaucoux-Lormiere F, Honore N, Berthier C, et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell. 2007;12(1):23–35.PubMedCrossRefGoogle Scholar
  113. 113.
    Minucci S, Pelicci PG. Determinants of oncogenic transformation in acute promyelocytic leukemia: the hetero-union makes the force. Cancer Cell. 2007;12(1):1–3.PubMedCrossRefGoogle Scholar
  114. 114.
    Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci USA. 2000;97(24):13306–11.PubMedCrossRefGoogle Scholar
  115. 115.
    Le Beau MM, Bitts S, Davis EM, Kogan SC. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood. 2002;99(8):2985–91.PubMedCrossRefGoogle Scholar
  116. 116.
    Walter MJ, Park JS, Lau SKM, Li X, Lane AA, Nagarajan R, et al. Expression profiling of murine acute promyelocytic leukemia cells reveals multiple model-dependent progression signatures. Mol Cell Biol. 2004;24:10882–93.PubMedCrossRefGoogle Scholar
  117. 117.
    Walter MJ, Park JS, Ries RE, Lau SK, McLellan M, Jaeger S, et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA. 2005;102(35):12513–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Kelly LM, Kutok JL, Williams IR, Boulton CL, Amarat SM, Curley DP, et al. PML/RARa and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA. 2002;99:8283–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood. 2006;108(5):1708–15.PubMedCrossRefGoogle Scholar
  120. 120.
    Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARa expression. Blood. 2003;102:1857–65.PubMedCrossRefGoogle Scholar
  121. 121.
    Lane AA, Ley TJ. Neutrophil elastase is important for PML-retinoic acid receptor alpha activities in early myeloid cells. Mol Cell Biol. 2005;25(1):23–33.PubMedCrossRefGoogle Scholar
  122. 122.
    Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 2003;112(11):1751–61.PubMedGoogle Scholar
  123. 123.
    Park DJ, Vuong PT, de Vos S, Douer D, Koeffler HP. Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood. 2003;102(10):3727–36.PubMedCrossRefGoogle Scholar
  124. 124.
    Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 2004;24(7):2890–904.PubMedCrossRefGoogle Scholar
  125. 125.
    Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P. PMLRAR homodimers: distinct DNA binding properties and heterodimeric interactions with RXR. EMBO J. 1993;12:3171–82.PubMedGoogle Scholar
  126. 126.
    Kamashev D, Vitoux D, De The H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med. 2004;199(8):1163–74.PubMedCrossRefGoogle Scholar
  127. 127.
    Meani N, Minardi S, Licciulli S, Gelmetti V, Coco FL, Nervi C, et al. Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene. 2005;24(20):3358–68.PubMedCrossRefGoogle Scholar
  128. 128.
    Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K, et al. Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood. 2008;111(5):2887–95.PubMedCrossRefGoogle Scholar
  129. 129.
    Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.PubMedCrossRefGoogle Scholar
  130. 130.
    Wang K, Wang P, Shi J, Zhu X, He M, Jia X, et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):186–97.PubMedCrossRefGoogle Scholar
  131. 131.
    van Wageningen S, Breems-de Ridder MC, Nigten J, Nikoloski G, Erpelinck-Verschueren CA, Lowenberg B, et al. Gene transactivation without direct DNA binding defines a novel gain-of-function for PML-RARalpha. Blood. 2008;111(3):1634–43.PubMedCrossRefGoogle Scholar
  132. 132.
    Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood. 2006;107(8):3330–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Duprez E, Wagner K, Koch H, Tenen DG. C/EBPbeta: a major PML-RARA-responsive gene in retinoic acid-induced differentiation of APL cells. EMBO J. 2003;22(21):5806–16.PubMedCrossRefGoogle Scholar
  134. 134.
    Doucas V, Brockes J, Yaniv M, de The H, Dejean A. The PML-retinoic acid receptor-a translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA. 1993;90:9345–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Tussie-Luna MI, Rozo L, Roy AL. Pro-proliferative function of the long isoform of PML-RARalpha involved in acute promyelocytic leukemia. Oncogene. 2006;25(24):3375–86.PubMedCrossRefGoogle Scholar
  136. 136.
    Yuan W, Payton JE, Holt MS, Link DC, Watson MA, DiPersio JF, et al. Commonly dysregulated genes in murine APL cells. Blood. 2007;109(3):961–70.PubMedCrossRefGoogle Scholar
  137. 137.
    Chang LW, Payton JE, Yuan W, Ley TJ, Nagarajan R, Stormo GD. Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia. Genome Biol. 2008;9(2):R38.PubMedCrossRefGoogle Scholar
  138. 138.
    Wethkamp N, Klempnauer KH. Daxx is a transcriptional repressor of CCAAT/enhancer-binding protein beta. J Biol Chem. 2009;284(42):28783–94.PubMedCrossRefGoogle Scholar
  139. 139.
    Grimwade D, Biondi A, Mozziconacci MJ, Hagemeijer A, Berger R, Neat M, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood. 2000;96:1297–308.PubMedGoogle Scholar
  140. 140.
    Gallagher RE, Mak S, Paietta E, Cooper B, Ehmann C, MS. T. Identification of a second acute promyelocytic leukemia (APL) patient with the STAT-RARa fusion gene among PML-RARa-negative Eastern Cooperative Oncology Group (ECOG) APL protocol registrants. Blood 2004; 104:821a.Google Scholar
  141. 141.
    Petti MC, Fazi F, Gentile M, Diverio D, De Faritiis P, De Propris MS, et al. Complete remission through blast cell differentiation in PLZF/RARa-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood. 2002;100:1065–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Sainty D, Liso V, Cantu-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Group Francais de Cytogenetique Hematologique, UK Cancer Cytogenetics Group and BIOMED 1 European Coomunity-Concerted Acion “Molecular Cytogenetic Diagnosis in Haematological Malignancies. Blood. 2000;96(4):1287–96.PubMedGoogle Scholar
  143. 143.
    Koken MH, Daniel MT, Gianni M, Zelent A, Licht J, Buzyn A, et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene. 1999;18(4):1113–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Rego EM, He LZ, Warrell Jr RP, Wang ZG, Pandolfi PP. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci USA. 2000;97:10173–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Rice KL, Hormaeche I, Doulatov S, Flatow JM, Grimwade D, Mills KI, et al. Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood. 2009;114(27):5499–511.PubMedCrossRefGoogle Scholar
  146. 146.
    He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, et al. Distinct interactions of PML-RARa and PLZF-RARa with co-repressors determine differential responses to RA in APL. Nat Genet. 1998;18:126–34.PubMedCrossRefGoogle Scholar
  147. 147.
    Licht J, Chomienne C, Goy A, Chen A, Scott A, Head D, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood. 1995;85:1083–94.PubMedGoogle Scholar
  148. 148.
    Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene. 1999;18:925.PubMedCrossRefGoogle Scholar
  149. 149.
    Guidez F, Parks S, Wong H, Jovanovic JV, Mays A, Gilkes AF, et al. RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci USA. 2007;104(47):18694–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Buijs A, Bruin M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia. 2007;21(5):1104–8.PubMedGoogle Scholar
  151. 151.
    Cools J, Stover EH, Wlodarska I, Marynen P, Gilliland DG. The FIP1L1-PDGFRalpha kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia. Curr Opin Hematol. 2004;11(1):51–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor form. Blood. 1996;87:882–6.PubMedGoogle Scholar
  153. 153.
    Wells RA, Hummel JL, De Koven A, Zipursky A, Kirby M, Dube I, et al. A new variant translocation in acute promyelocytic leukaemia: molecular characterization and clinical consideration. Leukemia. 1996;10:735–40.PubMedGoogle Scholar
  154. 154.
    Kusakabe M, Suzukawa K, Nanmoku T, Obara N, Okoshi Y, Mukai HY, et al. Detection of the STAT5B-RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur J Haematol. 2008;80(5):444–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Redner RL, Corey SL, Rush EA. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia. 1997;11:1014–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Okazuka K, Masuko M, Seki Y, Hama H, Honma N, Furukawa T, et al. Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion. Int J Hematol. 2007;86(3):246–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Rego EM, Ruggero D, Tribioli C, Cattoretti G, Kogan S, Redner RL, et al. Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha, PLZF/RAR alpha or NPM/RAR alpha. Oncogene. 2006;25(13):1974–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Chen Y, Gu L, Zhou C, Wu X, Gao J, Li Q, et al. Relapsed APL patient with variant NPM-RARalpha fusion responded to arsenic trioxide-based therapy and achieved long-term survival. Int J Hematol. 2010;91(4):708–10.PubMedCrossRefGoogle Scholar
  159. 159.
    Lafage-Pochitaloff M, Alcalay M, Brunel V, Longo L, Sainty D, Simonetti J, et al. Acute promyelocytic leukemia cases with nonreciprocal PML/RARa or RARa/PML fusion genes. Blood. 1995;85(5):1169–74.PubMedGoogle Scholar
  160. 160.
    Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, et al. The PML/RARa oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood. 1996;88:2826–32.PubMedGoogle Scholar
  161. 161.
    Zhu J, Koken MHM, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA. 1997;94:3978–83.PubMedCrossRefGoogle Scholar
  162. 162.
    Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA. 1999;96:2907–12.PubMedCrossRefGoogle Scholar
  163. 163.
    Liu T-X, Zhang J-W, Tao J, Zhang R-B, Zhang Q-H, Zhao C-J, et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood. 2000;96:1496–504.PubMedGoogle Scholar
  164. 164.
    Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001;6:680–6.CrossRefGoogle Scholar
  165. 165.
    Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller Jr WH, et al. CCAAT/enhancer binding protein e is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest. 1999;103:1399–408.PubMedCrossRefGoogle Scholar
  166. 166.
    Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH, et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA. 2005;102(21):7653–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Imaizumi M, Suzuki H, Yoshinari M, Sato A, Saito T, Sugawara A, et al. Mutations in the E-domain of RARa portion of the PML/RARa chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood. 1998;92:374–82.PubMedGoogle Scholar
  168. 168.
    Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E, et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARa fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood. 1998;92:1172–83.PubMedGoogle Scholar
  169. 169.
    Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia. 2002;16:1940–58.PubMedCrossRefGoogle Scholar
  170. 170.
    Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N, et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood. 2003;101(3):1141–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Yoshida H, Ichikawa H, Tagata Y, Katsumoto T, Ohnishi K, Akao Y, et al. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol Cell Biol. 2007;27(16):5819–34.PubMedCrossRefGoogle Scholar
  172. 172.
    Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.PubMedGoogle Scholar
  173. 173.
    Nervi C, Ferrara FF, Fanelli M, Tippo MP, Tomassini B, Ferrucci PF, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARa fusion protein. Blood. 1998;92:2244–51.PubMedGoogle Scholar
  174. 174.
    Shah SJ, Blumen S, Pitha-Rowe I, Kitareewan S, Freemantle SJ, Feng Q, et al. UBE1L represses PML/RAR{alpha} by targeting the PML domain for ISG15ylation. Mol Cancer Ther. 2008;7(4):905–14.PubMedCrossRefGoogle Scholar
  175. 175.
    Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG, et al. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood. 2004;104(5):1314–23.PubMedCrossRefGoogle Scholar
  176. 176.
    Hattori H, Zhang X, Jia Y, Subramanian KK, Jo H, Loison F, et al. RNAi screen identifies UBE2D3 as a mediator of all-trans retinoic acid-induced cell growth arrest in human acute promyelocytic NB4 cells. Blood. 2007;110(2):640–50.PubMedCrossRefGoogle Scholar
  177. 177.
    Ozpolat B, Akar U, Steiner M, Zorrilla-Calancha I, Tirado-Gomez M, Colburn N, et al. Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res. 2007;5(1):95–108.PubMedCrossRefGoogle Scholar
  178. 178.
    Kannan-Thulasiraman P, Dolniak B, Kaur S, Sassano A, Kalvakolanu DV, Hay N, et al. Role of the translational repressor 4E-BP1 in the regulation of p21(Waf1/Cip1) expression by retinoids. Biochem Biophys Res Commun. 2008;368(4):983–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Witcher M, Ross DT, Rousseau C, Deluca L, Miller Jr WH. Synergy between all-trans retinoic acid and tumor necrosis factor pathways in acute leukemia cells. Blood. 2003;102(1):237–45.PubMedCrossRefGoogle Scholar
  180. 180.
    Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62(14):3893–903.PubMedGoogle Scholar
  181. 181.
    Sumi D, Shinkai Y, Kumagai Y. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol Appl Pharmacol. 2010;244(3):385–92.PubMedCrossRefGoogle Scholar
  182. 182.
    Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L, et al. Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia. 2000;14:262–70.PubMedCrossRefGoogle Scholar
  183. 183.
    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354–60.PubMedGoogle Scholar
  184. 184.
    Fujisawa S, Ohno R, Shigeno K, Sahara N, Nakamura S, Naito K, et al. Pharmacokinetics of arsenic species in Japanese patients with relapsed or refractory acute promyelocytic leukemia treated with arsenic trioxide. Cancer Chemother Pharmacol. 2007;59(4):485–93.PubMedCrossRefGoogle Scholar
  185. 185.
    Fox E, Razzouk BI, Widemann BC, Xiao S, O’Brien M, Goodspeed W, et al. Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. Blood. 2008;111(2):566–73.PubMedCrossRefGoogle Scholar
  186. 186.
    Chen G-Q, Zhou L, Styblo M, Walton F, Jing Y, Weinberg R, et al. Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells. Cancer Res. 2003;63:1853–9.PubMedGoogle Scholar
  187. 187.
    Yoshino Y, Yuan B, Miyashita SI, Iriyama N, Horikoshi A, Shikino O, et al. Speciation of arsenic trioxide metabolites in blood cells and plasma of a patient with acute promyelocytic leukemia. Anal Bioanal Chem. 2009;393(2):689–97.PubMedCrossRefGoogle Scholar
  188. 188.
    Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Eng J Med. 1998;339:1341–8.CrossRefGoogle Scholar
  189. 189.
    Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, et al. PIC-1/SUMO-1 modified PML-retinoic acid receptor a mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol. 1999;19:5170–8.PubMedGoogle Scholar
  190. 190.
    Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A, et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med. 2001;193(12):1361–71.PubMedCrossRefGoogle Scholar
  191. 191.
    Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science. 2010;328(5975):240–3.PubMedCrossRefGoogle Scholar
  192. 192.
    Hong SH, Yang Z, Privalsky ML. Arsenic trioxide is a potent inhibitor of the interaction of SMRT corepressor with Its transcription factor partners, including the PML-retinoic acid receptor alpha oncoprotein found in human acute promyelocytic leukemia. Mol Cell Biol. 2001;21(21):7172–82.PubMedCrossRefGoogle Scholar
  193. 193.
    Lunghi P, Tabilio A, Lo-Coco F, Pelicci PG, Bonati A. Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia. 2005;19(2):234–44.PubMedCrossRefGoogle Scholar
  194. 194.
    Zhu X-H, Shen Y-L, Y-k J, Cai X, Jia P-M, Huang Y, et al. Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. J Natl Cancer Inst. 1999;91:772–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Davison K, Cote S, Mader S, Miller WH. Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia. 2003;17(5):931–40.PubMedCrossRefGoogle Scholar
  196. 196.
    Li L, Wang J, Ye RD, Shi G, Jin H, Tang X, et al. PML/RARalpha fusion protein mediates the unique sensitivity to arsenic cytotoxicity in acute promyelocytic leukemia cells: Mechanisms involve the impairment of cAMP signaling and the aberrant regulation of NADPH oxidase. J Cell Physiol. 2008;217(2):486–93.PubMedCrossRefGoogle Scholar
  197. 197.
    Gianni M, Koken MHM, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z, et al. Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood. 1998;91:4300–10.PubMedGoogle Scholar
  198. 198.
    Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol. 1998;55(11):1747–58.PubMedCrossRefGoogle Scholar
  199. 199.
    Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cell can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999;93:268–77.PubMedGoogle Scholar
  200. 200.
    Lu J, Chew EH, Holmgren A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA. 2007;104(30):12288–93.PubMedCrossRefGoogle Scholar
  201. 201.
    Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV. Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA. 2004;101(13):4578–83.PubMedCrossRefGoogle Scholar
  202. 202.
    Wang J, Li L, Cang H, Shi G, Yi J. NADPH oxidase-derived reactive oxygen species are responsible for the high susceptibility to arsenic cytotoxicity in acute promyelocytic leukemia cells. Leuk Res. 2008;32(3):429–36.PubMedCrossRefGoogle Scholar
  203. 203.
    Lin P, Welch EJ, Gao XP, Malik AB, Ye RD. Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol. 2005;174(5):2981–9.PubMedGoogle Scholar
  204. 204.
    Davison K, Mann KK, Waxman S, Miller Jr WH. JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood. 2004;103(9):3496–502.PubMedCrossRefGoogle Scholar
  205. 205.
    Bernardini S, Nuccetelli M, Noguera NI, Bellincampi L, Lunghi P, Bonati A, et al. Role of GSTP1-1 in mediating the effect of As2O3 in the acute promyelocytic leukemia cell line NB4. Ann Hematol. 2006;85(10):681–7.PubMedCrossRefGoogle Scholar
  206. 206.
    Chou WC, Chen HY, Yu SL, Cheng L, Yang PC, Dang CV. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005;106(1):304–10.PubMedCrossRefGoogle Scholar
  207. 207.
    Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K, et al. As2O3 induced apoptosis and loss of PML/RARa protein in both retinoid sensitive and resistant APL cells. J Natl Cancer Inst. 1998;90:124–33.PubMedCrossRefGoogle Scholar
  208. 208.
    Jing Y, Wang L, Xia L, Chen G-Q, Chen Z, Miller Jr WH, et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood. 2001;97:264–9.PubMedCrossRefGoogle Scholar
  209. 209.
    Sun Y, Kim SH, Zhou DC, Ding W, Paietta E, Guidez F, et al. Acute promyeloctyic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically-resistant to all-trans retinoic acid and arsenic trioxide. Leukemia. 2004;18:1258–69.PubMedCrossRefGoogle Scholar
  210. 210.
    Lallemand-Breitenbach V, Guillemin MC, Janin A, Daniel MT, Degos L, Kogan SC, et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J Exp Med. 1999;189:1043–52.PubMedCrossRefGoogle Scholar
  211. 211.
    Westervelt P, Pollock JL, Oldfather KM, Walter MJ, Ma MK, Williams A, et al. Adaptive immunity cooperates with liposomal all-trans-retinoic acid (ATRA) to facilitate long-term molecular remissions in mice with acute promyelocytic leukemia. Proc Natl Acad Sci USA. 2002;99(14):9468–73.PubMedCrossRefGoogle Scholar
  212. 212.
    Grimwade D, Enver T. Acute promyelocytic leukemia: where does it stem from? Leukemia. 2004;18(3):375–84.PubMedCrossRefGoogle Scholar
  213. 213.
    Zheng X, Seshire A, Ruster B, Bug G, Beissert T, Puccetti E, et al. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARa-positive leukemic stem cells. Haematologica. 2007;92:323–31.PubMedCrossRefGoogle Scholar
  214. 214.
    Bonomi R, Giordano H, del Pilar Moreno M, Bodega E, Gallagher R, et al. Simultaneous PML/RARalpha and AML1/ETO expression with t(15;17) at onset and relapse with only t(8;21) in an acute promyelocytic leukemia patient. Cancer Genet Cytogenet. 2000;123(1):41–3.PubMedCrossRefGoogle Scholar
  215. 215.
    Gurrieri C, Nafa K, Merghoub T, Bernardi R, Capodieci P, Biondi A, et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood. 2004;103(6):2358–62.PubMedCrossRefGoogle Scholar
  216. 216.
    Chen Z-X, Xue Y-Q, Zhang R, Tao R-F, Xia X-M, Li C, et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood. 1991;78:1413–9.PubMedGoogle Scholar
  217. 217.
    Frankel SR, Eardley A, Heller G, Berman E, Miller Jr WH, Dmitrovsky E, et al. All-trans-retinoic acid for acute promyelocytic leukemia: results of the New York study. Ann Int Med. 1994;120:278–86.PubMedGoogle Scholar
  218. 218.
    Warrell Jr RP. Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood. 1993;82:1949–53.PubMedGoogle Scholar
  219. 219.
    Muindi J, Frankel S, Miller Jr WH, Jakubowski A, Scheinberg D, Young C, et al. Continuous treatment with all-trans-retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79:299–303.PubMedGoogle Scholar
  220. 220.
    Adamson PC, Bailey J, Pluda J, Poplack DG, Bauza S, Murphy RF, et al. Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule. J Clin Oncol. 1995;13(4):1238–41.PubMedGoogle Scholar
  221. 221.
    Miller Jr WH, Jakubowski A, Tong WP, Miller VA, Rigas JR, Benedetti F, et al. 9-cis retinoic acid induces complete remission but does not reverse clinically acquired retinoid resistance in acute promyelocytic leukemia. Blood. 1995;85:3021–7.PubMedGoogle Scholar
  222. 222.
    Tobita T, Takeshita A, Kitamura K, Ohnishi K, Yanagi M, Hiraoka A, et al. Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid. Blood. 1997;90:967–73.PubMedGoogle Scholar
  223. 223.
    Douer D, Estey E, Santillana S, Bennett JM, Lopez-Berestein G, Boehm K, et al. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood. 2001;97:73–80.PubMedCrossRefGoogle Scholar
  224. 224.
    Cote S, Rosenauer A, Bianchini A, Seiter K, Vandewiele J, Nervi C, et al. Response to histone deacetylase inhibition of novel PML/RARalpha mutant detected in retinoic acid-resistant APL cells. Blood. 2002;100:261–70.CrossRefGoogle Scholar
  225. 225.
    Gallagher RE, Schachter-Tokarz EL, Zhou D-C, Ding W, Kim SH, Bi W, et al. Relapse of acute promyelocytic leukemia with PML-RARa mutant subclones independent of proximate all-trans retinoic acid selection pressure. Leukemia. 2006;20:556–62.PubMedCrossRefGoogle Scholar
  226. 226.
    Schachter-Tokarz E, Kelaidi C, Cassinat B, Chomienne C, Gardin C, Raffoux E, et al. PML-RARalpha ligand-binding domain deletion mutations associated with reduced disease control and outcome after first relapse of APL. Leukemia. 2010;24:473–6.PubMedCrossRefGoogle Scholar
  227. 227.
    Zhou D-C, Kim S, Ding W, Schulz C, Warrell Jr RP, Gallagher RE. Frequent mutations in the ligand binding domain of PML-RARa after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood. 2002;99:1356–63.PubMedCrossRefGoogle Scholar
  228. 228.
    Cote S, Zhou D, Bianchini A, Nervi C, Gallagher RE, Miller Jr WH. Altered ligand binding and transcriptional regulation by mutations in the PML/RARa ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia. Blood. 2000;96:3200–8.PubMedGoogle Scholar
  229. 229.
    Cornic M, Delva L, Guidez F, Balitrand N, Degos L, Chomienne C. Induction of retinoic acid-binding protein in normal and malignant human myeloid cells by retinoic acid in acute promyelocytic leukemia patients. Cancer Res. 1992;52:3329–34.PubMedGoogle Scholar
  230. 230.
    Zhou D-C, Hallam SJ, Klein RS, Wiernik PH, Tallman MS, Gallagher RE. Constitutive expression of cellular retinoic acid binding protein II and lack of correlation with sensitivity to all-trans retinoic acid in acute promyelocytic leukemia cells. Cancer Res. 1998;58:5770–6.PubMedGoogle Scholar
  231. 231.
    Napoli J. Retinoic acid biosynthesis and metabolism. FASEB J. 1996;10:993–1001.PubMedGoogle Scholar
  232. 232.
    Dong D, Ruuska SE, Levinthal DJ, Noy N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem. 1999;274:23695–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Delva L, Bastie J-N, Rochette-Egly C, Kraiba R, Balitrand N, Despauy G, et al. Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol. 1999;19:7158–67.PubMedGoogle Scholar
  234. 234.
    Quere R, Baudet A, Cassinat B, Bertrand G, Marti J, Manchon L, et al. Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007;109(10):4450–60.PubMedCrossRefGoogle Scholar
  235. 235.
    Fanelli M, Minucci S, Gelmetti V, Nervi C, Gambacorti-Passerini C, Pelicci PG. Constitutive degradation of PML/RARa through the proteasome pathway mediates retinoic acid resistance. Blood. 1999;93:1477–81.PubMedGoogle Scholar
  236. 236.
    McNamara S, Wang H, Hanna N, Miller Jr WH. Topoisomerase IIbeta negatively modulates retinoic acid receptor alpha function: a novel mechanism of retinoic acid resistance. Mol Cell Biol. 2008;28(6):2066–77.PubMedCrossRefGoogle Scholar
  237. 237.
    McNamara S, Nichol JN, Wang H, Miller Jr WH. Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia. 2010;24(4):729–39.PubMedCrossRefGoogle Scholar
  238. 238.
    Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK, et al. Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem. 2003;278(35):32544–51.PubMedCrossRefGoogle Scholar
  239. 239.
    Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S, et al. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem. 2001;276(6):4012–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Ohnuma-Ishikawa K, Morio T, Yamada T, Sugawara Y, Ono M, Nagasawa M, et al. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-­sensitive and -resistant cancer cells. Cancer Res. 2007;67(3):1019–29.PubMedCrossRefGoogle Scholar
  241. 241.
    Zhao HL, Ueki N, Marcelain K, Hayman MJ. The Ski protein can inhibit ligand induced RARalpha and HDAC3 degradation in the retinoic acid signaling pathway. Biochem Biophys Res Commun. 2009;383(1):119–24.PubMedCrossRefGoogle Scholar
  242. 242.
    Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G, et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res. 2003;1(3):234–46.PubMedGoogle Scholar
  243. 243.
    Srinivas H, Xia D, Moore NL, Uray IP, Kim H, Ma L, et al. Akt phosphorylates and suppresses the transactivation of retinoic acid receptor alpha. Biochem J. 2006;395(3):653–62.PubMedCrossRefGoogle Scholar
  244. 244.
    Ghavamzadeh A, Alimoghaddam K, Ghaffari SH, Rostami S, Jahani M, Hosseini R, et al. Treatment of acute promyelocytic leukemia with arsenic trioxide without ATRA and/or chemotherapy. Ann Oncol. 2006;17(1):131–4.PubMedCrossRefGoogle Scholar
  245. 245.
    Mathews V, George B, Chendamarai E, Lakshmi KM, Desire S, Balasubramanian P, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol. 2010;28(24):3866–71.PubMedCrossRefGoogle Scholar
  246. 246.
    Zhou J, Zhang Y, Li J, Li X, Hou J, Zhao Y, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010;115(9):1697–702.PubMedCrossRefGoogle Scholar
  247. 247.
    Ghaffari SH, Rostami S, Bashash D, Alimoghaddam K, Ghavamzadeh A. Real-time PCR analysis of PML-RAR alpha in newly diagnosed acute promyelocytic leukaemia patients treated with arsenic trioxide as a front-line therapy. Ann Oncol. 2006;17(10):1553–9.PubMedCrossRefGoogle Scholar
  248. 248.
    Ghaffari SH, Shayan-Asl N, Jamialahmadi AH, Alimoghaddam K, Ghavamzadeh A. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Ann Oncol. 2008;19(11):1927–34.PubMedCrossRefGoogle Scholar
  249. 249.
    Thirugnanam R, George B, Chendamarai E, Lakshmi KM, Balasubramanian P, Viswabandya A, et al. Comparison of clinical outcomes of patients with relapsed acute promyelocytic leukemia induced with arsenic trioxide and consolidated with either an autologous stem cell transplant or an arsenic trioxide-based regimen. Biol Blood Marrow Transplant. 2009;15(11):1479–84.PubMedCrossRefGoogle Scholar
  250. 250.
    Diaz Z, Mann KK, Marcoux S, Kourelis M, Colombo M, Komarnitsky PB, et al. A novel arsenical has antitumor activity toward As2O3-resistant and MRP1/ABCC1-overexpressing cell lines. Leukemia. 2008;22(10):1853–63.PubMedCrossRefGoogle Scholar
  251. 251.
    Tabellini G, Tazzari PL, Bortul R, Evangelisti C, Billi AM, Grafone T, et al. Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. Br J Haematol. 2005;130(5):716–25.PubMedCrossRefGoogle Scholar
  252. 252.
    Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P. Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood. 2005;105(10):4013–20.PubMedCrossRefGoogle Scholar
  253. 253.
    Leung J, Pang A, Yuen WH, Kwong YL, Tse EW. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 2007;109(2):740–6.PubMedCrossRefGoogle Scholar
  254. 254.
    Dilda PJ, Perrone GG, Philp A, Lock RB, Dawes IW, Hogg PJ. Insight into the selectivity of arsenic trioxide for acute promyelocytic leukemia cells by characterizing Saccharomyces cerevisiae deletion strains that are sensitive or resistant to the metalloid. Int J Biochem Cell Biol. 2008;40:1016–29.PubMedCrossRefGoogle Scholar
  255. 255.
    Zhou P, Kalakonda N, Comenzo RL. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005;128(5):636–44.PubMedCrossRefGoogle Scholar
  256. 256.
    Thorsen M, Di Y, Tangemo C, Morillas M, Ahmadpour D, Van der Does C, et al. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell. 2006;17(10):4400–10.PubMedCrossRefGoogle Scholar
  257. 257.
    Maciaszczyk-Dziubinska E, Migdal I, Migocka M, Bocer T, Wysocki R. The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 2010;584(4):726–32.PubMedCrossRefGoogle Scholar
  258. 258.
    Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113(9):1875–91.PubMedCrossRefGoogle Scholar
  259. 259.
    Falini B, Flenghi L, Fagioli M, Lo Coco F, Cordone I, Diverio D, et al. Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood. 1997;90(10):4046–53.PubMedGoogle Scholar
  260. 260.
    Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher RE, Racevskis J, et al. A surrogate marker profile for PML-RARa-expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin Cytom. 2004;59:1–9.PubMedCrossRefGoogle Scholar
  261. 261.
    Gallagher RE, Li Y-P, Rao S, Paietta E, Andersen J, Etkind P, et al. Characterization of acute promyelocytic leukemia cases with PML-RARa break/fusion sites in PML exon 6: Identification of a subgroup with decreased in vitro responsiveness to all-trans-retinoic acid. Blood. 1995;86:1540–7.PubMedGoogle Scholar
  262. 262.
    Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia. 2005;19(7):1153–60.PubMedCrossRefGoogle Scholar
  263. 263.
    Gonzalez M, Barragan E, Bolufer P, Chillon C, Colomer D, Borstein R, et al. Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RARa isoforms: a study of the PETHEMA group. Br J Haematol. 2001;114:99–103.PubMedCrossRefGoogle Scholar
  264. 264.
    Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T, Schnittger S. Impact of FLT3 mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol. 2005;130(2):196–202.PubMedCrossRefGoogle Scholar
  265. 265.
    Tallman MS, Kim HT, Montesinos P, Appelbaum FR, de la Serna J, Bennett JM, et al. Does microgranular variant morphology of acute promyelocytic leukemia independently predict for a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood. 2010;116(25):5650–9.PubMedCrossRefGoogle Scholar
  266. 266.
    Fukutani H, Naoe T, Ohno R, Yoshida H, Miyawaki S, Shimazaki C, et al. Prognostic significance of the RT-PCR assay of PML-RARA transcripts in acute promyelocytic leukemia. Leukemia. 1995;9:588–93.PubMedGoogle Scholar
  267. 267.
    Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, et al. Molecular remission in PML/RARa-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Blood. 1997;90:1014–21.PubMedGoogle Scholar
  268. 268.
    Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood. 1999;93:4131–43.PubMedGoogle Scholar
  269. 269.
    Stock W, Moser B, Powell BL, Appelbaum FR, Tallman MS, Larson RA, et al. Prognostic significance of initial clincial and molecular genetic features of actue promeylocytic leukemia (APL): Results from the North American Intergroup Trial C9710 (Abstract #7016). J Clin Oncol (Suppl) 2007;25:361s.Google Scholar
  270. 270.
    Chillon MC, Santamaria C, Garcia-Sanz R, Balanzategui A, Maria Eugenia S, Alcoceba M, et al. Long FLT3 internal tandem duplications and reduced PML-RARalpha expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Haematologica. 2010;95(5):745–51.PubMedCrossRefGoogle Scholar
  271. 271.
    Cervera J, Montesinos P, Hernandez-Rivas JM, Calasanz MJ, Aventin A, Ferro MT, et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica. 2010;95(3):424–31.PubMedCrossRefGoogle Scholar
  272. 272.
    Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W. New score predicting for prognosis in PML-RARA-, AML1-ETO-, or CBFB-MYH11-positive acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003;102:2746–55.PubMedCrossRefGoogle Scholar
  273. 273.
    Gallagher RE, Yeap BY, Bi W, Livak KJ, Beaubier N, Rao S, et al. Quantitative real-time RT-PCR analysis of PML-RARa mRNA in adult acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood. 2003;101:2521–8.PubMedCrossRefGoogle Scholar
  274. 274.
    Weisberg E, Sattler M, Ray A, Griffin JD. Drug resistance in mutant FLT3-positive AML. Oncogene. 2010;29(37):5120–34.PubMedCrossRefGoogle Scholar
  275. 275.
    Beitinjaneh A, Jang S, Roukoz H, Majhail NS. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res. 2010;34(7):831–6.PubMedCrossRefGoogle Scholar
  276. 276.
    Noguera N, Breccia M, Divona M, Diverio D, Costa V, Avvisati G, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16:2185–9.PubMedCrossRefGoogle Scholar
  277. 277.
    Au WY, Fung A, Chim CS, Lie AK, Liang R, Ma ES, et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. Br J Haematol. 2004;125(4):463–9.PubMedCrossRefGoogle Scholar
  278. 278.
    Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106(12):3768–76.PubMedCrossRefGoogle Scholar
  279. 279.
    Stock W, Moser B, Najib K, Powell B, Gulati K, Holowka N et al. High incidence of FLT3 mutations in adults with acute promyelocytic leukemia (APL): Correlation with diagnostic features and treatment outcome (C-9710) [abstract]. J Clin Oncol (Suppl) 2008Google Scholar
  280. 280.
    Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.PubMedGoogle Scholar
  281. 281.
    Santamaria C, Chillon MC, Garcia-Sanz R, Balanzategui A, Sarasquete ME, Alcoceba M, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93(12):1797–805.PubMedCrossRefGoogle Scholar
  282. 282.
    Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA. 2009;106(9):3342–7.PubMedCrossRefGoogle Scholar
  283. 283.
    Powell BL, Moser B, Stock W, Gallagher RE, Willman CL, Stone RM, et al. Arsenic trioxide improves event-free and over-all ­survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood. 2010;116:3751–7.PubMedCrossRefGoogle Scholar
  284. 284.
    Gore SD, Gojo I, Sekeres MA, Morris L, Devetten MP, Jamieson K, et al. A single cycle of arsenic trioxide-based consolidation chemotherapy spares anthracycline exposure in the primary management of acute promyelocytic leukemia. J Clin Oncol. 2010;28:1047–53.PubMedCrossRefGoogle Scholar
  285. 285.
    van Dongen JJM, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999;13:1901–28.PubMedCrossRefGoogle Scholar
  286. 286.
    Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995;4(6):357–62.PubMedGoogle Scholar
  287. 287.
    Gabert J, Beillard E, van der Velden V, Bi W, Grimwade D, Pallisgaard N. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) of fusion gene transcripts for residual disease detection in leukemia – A Europe Against Cancer Program. Leukemia. 2003;17:2318–57.PubMedCrossRefGoogle Scholar
  288. 288.
    Santamaria C, Chillon MC, Fernandez C, Martin-Jimenenz P, Balanzategui A, Sanz RG, et al. Using quantification of the PML-RARa transcript to stratify the risk of relapse in patients with acute promyelocytic leukemia. Haematologica. 2007;92:315–22.PubMedCrossRefGoogle Scholar
  289. 289.
    Gallagher R, Schachter-Tokarz E, Zhou D-C, Liao K, Jones D, Estey E. MRD monitoring in acute promyelocytic leukemia: unresolved issues in 2005. Hematol Rep. 2005;1:76–9.Google Scholar
  290. 290.
    Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARa fusion gene in patient with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. Blood. 1998;92:784–9.PubMedGoogle Scholar
  291. 291.
    Grimwade D, Lo Coco F. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16:1959–73.PubMedCrossRefGoogle Scholar
  292. 292.
    LoCoco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood. 1999;94:2225–9.Google Scholar
  293. 293.
    Esteve J, Escoda L, Martin G, Rubio V, Diaz-Mediavilla J, Gonzalez M, et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia. 2007;21(3):446–52.PubMedCrossRefGoogle Scholar
  294. 294.
    Cassinat B, de Botton S, Kelaidi C, Ades L, Zassadowski F, Guillemot I et al. When can real-time quantitative RT-PCR effectively define molecular relapse in acute promyelocytic leukemia patients? (Results of the French Belgian Swiss APL Group). Leuk Res 2009.Google Scholar
  295. 295.
    Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27(22):3650–8.PubMedCrossRefGoogle Scholar
  296. 296.
    Gallagher RE. Real-time consensus on relapse risk in acute promyelocytic leukemia. Leuk Res 2009.Google Scholar
  297. 297.
    Ommen HB, Schnittger S, Jovanovic JV, Ommen IB, Hasle H, Ostergaard M, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205.PubMedCrossRefGoogle Scholar
  298. 298.
    Vickers M, Jackson G, Taylor P. The incidence of cute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia. 2000;14:722.PubMedCrossRefGoogle Scholar
  299. 299.
    Carter M, Kalwinsky DK, Dahl GV, et al. Childhood acute promyelocytic leukemia: a rare variant of nonlymphoid leukemia with distinctive clinical and biologic features. Leukemia. 1989;3:298.PubMedGoogle Scholar
  300. 300.
    Biondi A, Rovelli A, Cantù-Rajnoldi A, et al. Acute promyelocytic leukemia in children: Experience of the Italian Pediatric Hematology and Oncology Group (AIEOP). Leukemia. 1994;8 Suppl 2:S66.PubMedGoogle Scholar
  301. 301.
    Maule MM, Damma E, Mosso ML, et al. High incidence of acute promyelocytic leukemia in children in northwest Italy, 1980–2003: a report from the childhood cancer registry of Piedmont. Leukemia. 2008;22:439–41.PubMedCrossRefGoogle Scholar
  302. 302.
    Biondi A, Rovelli A, Cantŭ-Raynoldi A, et al. Acute promyelocytic leukemia in children: experience of the Italian pediatric hematology and oncology group (AIEOP). Leukemia. 1994;8:1264–8.PubMedGoogle Scholar
  303. 303.
    Malta-Corea A, Pacheco Espinoza C, Cantù-Rajnoldi A, et al. Childhood acute promyelocytic leukemia in Nicaragua. Ann Oncol. 1993;4:892.PubMedGoogle Scholar
  304. 304.
    Douer D, Preston-Martin S, Chang E, et al. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood. 1996;87:308.PubMedGoogle Scholar
  305. 305.
    Hernández P, Milanés MT, Svarch E, et al. High relative proportion of acute promyelocytic leukemia in children: experience of a multicenter study in Cuba. Leuk Res. 2000;24:739–40.PubMedCrossRefGoogle Scholar
  306. 306.
    Matasar MJ, Ritchie EK, Consedine N, et al. Incidence rates of acute promyelocytic leukemia among Hispanics, blacks, Asians and non-Hispanic whites in the United States. Eur J Cancer Prev. 2006;15:367–70.PubMedCrossRefGoogle Scholar
  307. 307.
    Wiernik PH, Andersen JW. Unpublished observations, 1994.Google Scholar
  308. 308.
    Mele A, Stazi MA, Pulsoni A, et al. Epidemiology of acute promyelocytic leukemia. Haematologica. 1995;80:405.PubMedGoogle Scholar
  309. 309.
    Pulsoni A, Stazi A, Cotichini R, et al. Acute promyelocytic leukemia: Epidemiology and risk factors. A report of the GIMEMA Italian archive of adult acute leukaemia. GIMEMA Cooperative Group. Eur J Haematol. 1998;61:327.PubMedCrossRefGoogle Scholar
  310. 310.
    Estey E, Thall P, Kantarjian H, et al. Association between increased body mass index and a diagnosis of acute promyelocytic leukemia in patients with acute myeloid leukemia. Leukemia. 1997;12:1503.Google Scholar
  311. 311.
    Jeddi R, Ghédira H, Mnif S, et al. High body mass index is an independent predictor of differentiation syndrome in patients with acute promyelocytic leukemia. Leuk Res. 2010;34:545–7.PubMedCrossRefGoogle Scholar
  312. 312.
    Yin CC, Glassman AP, Lin P, et al. Morphologic, cytogenetic and molecular abnormalities in therapy-related acute promyelocytic leukemia. Am J Clin Pathol. 2005;123:840–8.PubMedCrossRefGoogle Scholar
  313. 313.
    Beaumont M, Sanz M, Carli PM, et al. Therapy-related acute promyelocytic leukemia. J Clin Oncol. 2003;21:2123–37.PubMedCrossRefGoogle Scholar
  314. 314.
    Au WY, Ma SK, Chung LP, et al. Two cases of therapy-related acute promyelocytic leukemia (t-APL) after mantle cell lymphoma and gestational trophoblastic disease. Ann Hematol. 2002;81:659–71.PubMedCrossRefGoogle Scholar
  315. 315.
    Mays AN, Osheroff N, Xiao Y, et al. Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood. 2010;115:326–30.PubMedCrossRefGoogle Scholar
  316. 316.
    Mistry AR, Felix CA, Whitmarch RJ, et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med. 2005;352:1529–38.PubMedCrossRefGoogle Scholar
  317. 317.
    Bosca I, Pascual AM, Cassanova B, et al. Four new cases of therapy-related acute promyelocytic leukemia after mitoxantrone. Neurology. 2008;71:457–8.PubMedCrossRefGoogle Scholar
  318. 318.
    Hasan SK, Mays AN, Ottone T, et al. Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood. 2008;112:3383–90.PubMedCrossRefGoogle Scholar
  319. 319.
    Ramkumar B, Chadra MK, Barcos M, et al. Acute promyelocytic leukemia after mitoxantrone therapy for multiple sclerosis. Cancer Genet Cytogenet. 2008;182:126–9.PubMedCrossRefGoogle Scholar
  320. 320.
    Matsuo K, Kiura K, Tahata M, et al. Clustered incidence of acute promyelocytic leukemia during gefitinib treatment of non-small cell lung cancer: experience at a single institution. Am J Hematol. 2006;81:349–54.PubMedCrossRefGoogle Scholar
  321. 321.
    Daly PA, Schiffer CA, Wiernik PH. Acute promyelocytic leukemia—Clinical management of 15 patients. Am J Hematol. 1980;8:347.PubMedCrossRefGoogle Scholar
  322. 322.
    Biondi A, Luciano A, Bassan R, et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia. 1995;9:1461.PubMedGoogle Scholar
  323. 323.
    Hazani A, Weidenfeld Y, Tatarsky I, Bental E. Acute promyelocytic leukemia presenting as sudden blindness and sinus vein thrombosis. Am J Hematol. 1988;28:56.PubMedCrossRefGoogle Scholar
  324. 324.
    Jetha N. Promyelocytic leukemia with multiorgan infarctions and large vessel thrombosis. Arch Pathol Lab Med. 1981;105:683.PubMedGoogle Scholar
  325. 325.
    Hoyle CF, Swirsky DM, Freedman L, Hayhoe FGJ. Beneficial effect of heparin in the management of patients with APL. Br J Haematol. 1988;68:283.PubMedCrossRefGoogle Scholar
  326. 326.
    Avvisati G, LoCoco F, Mandelli F. Acute promyelocytic leukemia: clinical and morphologic features and prognostic factors. Semin Hematol. 2001;38:4–12.PubMedCrossRefGoogle Scholar
  327. 327.
    Lavau C, Dejean A. The t(15;17) translocation in acute promyelocytic leukemia. Leukemia. 1994;8 Suppl 2:S9.Google Scholar
  328. 328.
    Sessarego M, Fugazza G, Balleari E, et al. High frequency of trisomy 8 in acute promyelocytic leukemia: a fluorescence in situ hybridization study. Cancer Genet Cytogenet. 1997;97:161.PubMedCrossRefGoogle Scholar
  329. 329.
    De Botton S, Chevret S, Sanz M, et al. Additional chromosomal abnormalities in patients with acute promyelocytic leukaemia (APL) do not confer poor prognosis: Results of APL 93 trial. Br J Haematol. 2000;111:801.PubMedCrossRefGoogle Scholar
  330. 330.
    Hernandez JM, Martin G, Gutierrez NC, et al. Additional cytogenetic changes do not influence the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with ATRA plus anthracyclin based protocol. A report of the Spanish group PETHEMA. Haematologica. 2001;86:807.PubMedGoogle Scholar
  331. 331.
    Schoch C, Haase D, Haferlach T, et al. Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22;q21): A report on 50 patients. Br J Haematol. 1996;94:493.PubMedCrossRefGoogle Scholar
  332. 332.
    Slack JL, Arthur DC, Lawrence D, et al. Secondary cytogenetic changes in acute promyelocytic leukemia—prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: A Cancer and Leukemia Group B study. J Clin Oncol. 1997;15:1786.PubMedGoogle Scholar
  333. 333.
    Pantic M, Novak A, Marislavljevic D, et al. Additional chromosome aberrations in acute promyelocytic leukemia: Characteristics and prognostic influence. Med Oncol. 2000;17:307.PubMedCrossRefGoogle Scholar
  334. 334.
    Xu L, Zhao WL, Xiong SM, et al. Molecular cytogenetic characterization and clinical relevance of additional complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia. 2001;15:1359–68.PubMedCrossRefGoogle Scholar
  335. 335.
    Cervera J, Montesinos P, Hernández-Rivas JM, et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica. 2010;95:424–31.PubMedCrossRefGoogle Scholar
  336. 336.
    Batzios C, Hayes LA, He SZ, et al. Secondary clonal cytogenetic abnormalities following successful treatment of acute promyelocytic leukemia. Am J Hematol. 2010;133:484–90.Google Scholar
  337. 337.
    Dimov ND, Medeiros LJ, Ravandi F, Bueso Ramos CE. Acute promyelocytic leukemia at time of relapse commonly demonstrates cytogenetic evidence of clonal evolution and variability in blast immunophenotypic features. Am J Clin Pathol. 2010;133:454–90.CrossRefGoogle Scholar
  338. 338.
    Grimwade D, Biondi A, Mozziconacci MJ, et al. Characterization of acute promyelocytic leukemia cases lacking the classic 9 t(15:17): Results of the European Working Party. Group Francais de Cytogenetique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood. 2000;96:1297.PubMedGoogle Scholar
  339. 339.
    Jansen JH, de Ridder MC, Geertsma WM, et al. Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor. Blood. 1999;94:39.PubMedGoogle Scholar
  340. 340.
    Krause JR, Stolc V, Kaplan SS, Penchansky L. Microgranular promyelocytic leukemia: a multiparameter examination. Am J Hematol. 1989;30:158.PubMedCrossRefGoogle Scholar
  341. 341.
    Murray CK, Estey E, Paietta E, et al. CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome? J Clin Oncol. 1999;17:293.PubMedGoogle Scholar
  342. 342.
    Castoldi GL, Liso V, Specchia G, Tomasi P. Acute promyelocytic leukemia: morphological aspects. Leukemia. 1994;8 Suppl 2:S27.PubMedGoogle Scholar
  343. 343.
    Bennett JM, Catovsky D, Daniel MT, et al. A variant form of hypergranular promyelocytic leukemia (M3). French-American-British (FAB) Co-operative Group. Br J Haematol. 1980;44:169.PubMedCrossRefGoogle Scholar
  344. 344.
    Rovelli A, Biondi A, Cantù Rajnoldi A, et al. Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol. 1992;10:1413.PubMedGoogle Scholar
  345. 345.
    Davey FR, Davis RB, MacCallum JM, et al. Morphologic and cytochemical characteristics of acute promyelocytic leukemia. Am J Hematol. 1989;30:221.PubMedCrossRefGoogle Scholar
  346. 346.
    Tallman MS, Kim HT, Montesinos P, et al. Does microgranular variant morphology of acute promyelocytic leukemia independently predict for a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood. 2010;116(25):5650–9.PubMedCrossRefGoogle Scholar
  347. 347.
    Golomb HM, Rowley JD, Vardiman JW, et al. “Microgranular” acute promyelocytic leukemia: a distinct clinical, ultrastructural, and cytogenetic entity. Blood. 1980;55:253.PubMedGoogle Scholar
  348. 348.
    McKenna RW, Parkin J, Bloomfield CD, et al. Acute promyelocytic leukemia: a study of 39 cases with identification of a hyperbasophilic microgranular variant. Br J Haematol. 1982;50:201.PubMedCrossRefGoogle Scholar
  349. 349.
    Invernizzi R, Iannone AM, Bernuzzi S, et al. Acute promyelocytic leukemia: morphological and clinical features. Haematologica. 1993;78:156.PubMedGoogle Scholar
  350. 350.
    Tallman MS, Hakimian D, Snower D, et al. Basophilic differentiation in acute promyelocytic leukemia. Leukemia. 1993;7:521.PubMedGoogle Scholar
  351. 351.
    Erber WN, Asbahr H, Rule SA, Scott CS. Unique immunophenotype of acute promyelocytic leukemia as defined by CD9 and CD68 antibodies. Br J Haematol. 1994;88:101.PubMedCrossRefGoogle Scholar
  352. 352.
    Koike T, Tatewaki W, Aoki A, et al. Brief report: severe symptoms of hyperhistaminemia after the treatment of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med. 1992;327:385.PubMedCrossRefGoogle Scholar
  353. 353.
    Gilbert RD, Karabus CD, Mills E. Acute promyelocytic leukemia: a childhood cluster. Cancer. 1987;59:933.PubMedCrossRefGoogle Scholar
  354. 354.
    Williams CKO, Folani AO, Saditan AAO, et al. Childhood acute leukemia in a tropical population. Br J Cancer. 1982;42:89.CrossRefGoogle Scholar
  355. 355.
    Scott RM, Mayer RJ. The unique aspects of acute promyelocytic leukemia. J Clin Oncol. 1990;8:1913.Google Scholar
  356. 356.
    Masamoto Y, Nannya Y, Arai S, et al. Evidence for basophilic differentiation of acute promyelocytic leukemia cells during arsenic trioxide therapy. Br J Hematol. 2009;144:798–9.CrossRefGoogle Scholar
  357. 357.
    Das Gupta A, Sapre RS, Shah AS, et al. Cytochemical and immunophenotypic heterogeneity in acute promyelocytic leukemia. Acta Haematol. 1989;81:5.PubMedCrossRefGoogle Scholar
  358. 358.
    Scott CS, Patel D, Drexler HG, et al. Immunophenotypic and enzymatic studies do not support the concept of mixed monocytic-granulocytic differentiation in acute promyelocytic leukemia (M3): A study of 44 cases. Br J Haematol. 1989;71:50.CrossRefGoogle Scholar
  359. 359.
    Drexler HG. Classification of acute myeloid leukemia: a comparison of FAB and immunophenotyping. Leukemia. 1987;1:697.PubMedGoogle Scholar
  360. 360.
    Sanz MA, Jarque I, Martín G, et al. Acute promyelocytic leukemia. Therapy results and prognostic factors. Cancer. 1988;61:7.PubMedCrossRefGoogle Scholar
  361. 361.
    Breccia M, Carmosino I, Diverio D, et al. Early detection of meningeal localization in acute promyelocytic leukemia patients with high presenting leucocyte count. Br J Haematol. 2003;120:266–70.PubMedCrossRefGoogle Scholar
  362. 362.
    Nagai S, Nammya Y, Arai S, et al. Molecular and cytogenetic monitoring and preemptive therapy for central nervous system relapse of acute promyelocytic leukemia. Haematologica. 2010;95:169–71.PubMedCrossRefGoogle Scholar
  363. 363.
    Kaspers G, Gibson B, Grimwade D, et al. Central nervous system involvement in relapsed acute promyelocytic leukemia. Pediatr Blood Cancer. 2009;53:235–6.PubMedCrossRefGoogle Scholar
  364. 364.
    Montesinos P, Díaz-Mediavilla J, Debén G, et al. Central nervous involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monotherapy without intrathecal prophyllaxis. Haematologica. 2009;94:1242–9.PubMedCrossRefGoogle Scholar
  365. 365.
    Akoz AG, Dagdas S, Oget G, et al. Isolated central nervous system relapse during cytologic and molecular hematologic remission in two patients with acute promyelocytic leukemia. Hematology. 2007;12:419–22.PubMedCrossRefGoogle Scholar
  366. 366.
    Vega-Ruíz A, Faderl S, Estrov Z, et al. Incidence of extrameullary disease in patients with acute promyelocytic leukemia: a single-institution experience. Int J Hematol. 2009;89:489–96.PubMedCrossRefGoogle Scholar
  367. 367.
    Ko B-S, Tang J-L, Chen Y-C, et al. Extramedullary relapse after all-trans retinoic acid treatment in acute promyelocytic leukemia—the occurrence of retinoic acid syndrome is a risk factor. Leukemia. 1999;13:1406.PubMedCrossRefGoogle Scholar
  368. 368.
    de Botton S, Sanz MA, Chevret S, et al. Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia. 2006;20:35–41.PubMedCrossRefGoogle Scholar
  369. 369.
    De Renzo A, Santoro LFE, Notaro R, et al. Acute promyelocytic leukemia after treatment for non-Hodgkin’s lymphoma with drugs targeting topoisomerase II. Am J Hematol. 1999;60:300.PubMedCrossRefGoogle Scholar
  370. 370.
    Kantarjian HM, Keating MJ, Walters RS, et al. The association of specific “favorable” cytogenetic abnormalities with secondary leukemia. Cancer. 1986;58:924.PubMedCrossRefGoogle Scholar
  371. 371.
    Detourmignies L, Castaigne S, Stoppa AM, et al. Therapy-related acute promyelocytic leukemia: A report of 16 cases. J Clin Oncol. 1992;10:1430.PubMedGoogle Scholar
  372. 372.
    Hall MJ, Li L, Wiernik PH, Olopade OI. BRCA2 mutation and the risk of hematologic malignancy. Leuk Lymphoma. 2006;47:765–7.PubMedGoogle Scholar
  373. 373.
    Castaigne S, Berger R, Jolly V, et al. Promyelocytic blast crisis of chronic myelocytic leukemia with both t(9;22) and t(15;17) in M3 cells. Cancer. 1984;54:2409.PubMedCrossRefGoogle Scholar
  374. 374.
    Rosenthal NS, Knapp D, Farhi DC. Promyelocytic blast crisis of chronic myelogenous leukemia. A rare subtype associated with disseminated intravascular coagulation. Am J Clin Pathol. 1995;103:185.PubMedGoogle Scholar
  375. 375.
    Misawa S, Lee E, Schiffer CA, et al. Association of the translocation (15;17) with malignant proliferation of promyelocytes in acute leukemia and chronic myelogenous leukemia at blast crisis. Blood. 1986;67:270.PubMedGoogle Scholar
  376. 376.
    Hogge DE, Misawa S, Schiffer CA, Testa JR. Promyelocytic blast crisis in chronic granulocytic leukemia with 15;17 translocation. Leuk Res. 1984;6:1019.CrossRefGoogle Scholar
  377. 377.
    Wiernik PH, Dutcher JP, Paietta E, et al. Treatment of promyelocytic blast crisis of chronic myelogenous leukemia with all transretinoic acid. Leukemia. 1991;5:504.PubMedGoogle Scholar
  378. 378.
    Hatzis T, Standen GR, Howell RT, et al. Acute promyelocytic leukaemia (M3): Relapse with acute myeloblastic leukaemia (M2) and dic(5;17)(q11;p11). Am J Hematol. 1995;48:40.PubMedCrossRefGoogle Scholar
  379. 379.
    Bseiso AN, Kantarjian H, Estey E. Myelodysplastic syndrome following successful therapy of acute promyelocytic leukemia. Leukemia. 1977;11:168.CrossRefGoogle Scholar
  380. 380.
    Felice MS, Rossi J, Gallego M, et al. Acute trilineage leukemia with monosomy of chromosome 7 following an acute promyelocytic leukemia. Leuk Lymphoma. 1999;34:409.PubMedGoogle Scholar
  381. 381.
    Zompi S, Legrand O, Bouscany D, et al. Therapy-related acute myeloid leukemia after successful therapy for acute promyelocytic leukaemia with t(15;17): A report of two cases and a review of the literature. Br J Haematol. 2000;110:610.PubMedCrossRefGoogle Scholar
  382. 382.
    Park TS, Choi JR, Yoon SH, et al. Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1-MDS1-EV11 fision transcript. Cancer Genet Cytogenet. 2008;187:61–73.PubMedCrossRefGoogle Scholar
  383. 383.
    Di Bona E, Avvisati G, Castaman G, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108:689.PubMedCrossRefGoogle Scholar
  384. 384.
    Visani G, Gugliotta L, Tosi P, et al. All-trans retinoic acid significantly reduces the incidence of early hemorrhagic death during induction therapy of acute promyelocytic leukemia. Eur J Haematol. 2000;64:139.PubMedCrossRefGoogle Scholar
  385. 385.
    Yates JW, Wallace Jr J, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57:485.PubMedGoogle Scholar
  386. 386.
    Estey E, Thall PF, Pierce S, et al. Treatment of newly diagnosed acute promyelocytic leukemia without cytarabine. J Clin Oncol. 1997;15:483.PubMedGoogle Scholar
  387. 387.
    Sanz MA, Guillermo M, Rayon C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARα-positive acute promyelocytic leukemia. Blood. 1999;94:3015.PubMedGoogle Scholar
  388. 388.
    Head DR, Kopecky KJ, Weick J, et al. Effect of aggressive daunomycin therapy on survival in acute promyelocytic leukemia. Blood. 1995;86:1717.PubMedGoogle Scholar
  389. 389.
    Pallavicini EB, Luliri P, Anselmetti L, et al. High-dose daunorubicin (DNR) for induction and treatment of relapse in acute promyelocytic leukemia (APL): Report of 17 cases. Haematologica. 1988;73:49.Google Scholar
  390. 390.
    Carotenuto M, Greco M, Bavaro P et al. Acute promyelocytic leukemia: Results of treatment of 10 cases (Abstr). In: Proceedings of the 3 rd International Symposium on Therapy of Acute Leukemias, 1982.Google Scholar
  391. 391.
    Salvaneschi L, Lazzarino M, Morra E et al. Survival in adult acute myeloid leukemia under conventional chemotherapy (Abstr). In: Proceedings of the 3 rd International Symposium on Therapy of Acute Leukemias, 1982.Google Scholar
  392. 392.
    Marty M, Ganem G, Fisher J, et al. Leucémie aiguë promyélocytaire. Étude rétrospective de 119 malades traités par daunorubicine. Novu Rev Fr Hématol. 1984;26:371.Google Scholar
  393. 393.
    Mandelli F, Petti MC, Avvisati G, et al. GIMEMA experience in the treatment of adult myelogenous. In: Gale RP, editor. Acute myelogenous leukemia: progress and controversies. New York: Wiley-Liss; 1990. p. 273.Google Scholar
  394. 394.
    Petti MC, Avvisati G, Amadori S, et al. Acute promyelocytic leukemia: clinical aspects and results of treatment in 62 patients. Haematologica. 1987;72:151.PubMedGoogle Scholar
  395. 395.
    Bennett JM, Andersen JW, Cassileth PA. Long term survival in acute myeloid leukemia: The Eastern Cooperative Oncology Group. Leuk Res. 1991;15:223.PubMedCrossRefGoogle Scholar
  396. 396.
    Clarkson B. Retinoic acid in acute promyelocytic leukemia: the promise and the paradox. Cancer Cells. 1991;3:211.PubMedGoogle Scholar
  397. 397.
    Fenaux P, Pollet JP, Vandenbossche-Simon L, et al. Treatment of acute promyelocytic leukemia: a report of 70 cases. Leuk Lymphoma. 1991;4:239.CrossRefGoogle Scholar
  398. 398.
    Head DR, Kopecky K, Hewlett J, et al. Survival with cytotoxic therapy in acute promyelocytic leukemia, a SWOG report. Blood. 1991;78:268a.Google Scholar
  399. 499.
    Thomas X, Archimbaud E, Treille-Ritouet D, et al. Prognostic factors in acute promyelocytic leukemia: a retrospective study of 67 cases. Leuk Lymphoma. 1991;4:249.CrossRefGoogle Scholar
  400. 400.
    Willemze R, Suciu S, Mandelli F, et al. Treatment of patients with acute promyelocytic leukemia. The EORTC-LCG experience. Leukemia. 1994;8 Suppl 2:S48.PubMedGoogle Scholar
  401. 401.
    Adẻs L, Chevret S, Raffoux E, et al. Is cytarabine useful in the treatment of acute promyelocytic leukemia? Results of a randomized trial from the European acute promyelocytic leukemia group. J Clin Oncol. 2006;24:5703–54710.PubMedCrossRefGoogle Scholar
  402. 402.
    Sanz MA, Montesinos P, Rayón C, et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood. 2010;115:5137–46.PubMedCrossRefGoogle Scholar
  403. 403.
    Imaizumi M, Tawa A, Hanada R, et al. Prospective study of a therapeutic regimen with all-trans retinoic acid and anthracyclines in combination of cytarabine in children with acute promyeocytic leukaemia: the Japanese childhood acute myeloid leukaemia cooperative study. Br J Haematol. 2011;152(1):89–98.PubMedCrossRefGoogle Scholar
  404. 404.
    Lengfelder E, Reichert A, Schoch C, et al. Double induction strategy including high dose cytarabine in combination with all-trans retinoic acid: effects in patients with newly diagnosed acute promyelocytic leukemia. Leukemia. 2000;14:1362.PubMedCrossRefGoogle Scholar
  405. 405.
    Berman E. A review of idarubicin in acute leukemia. Oncology. 1993;7:91.PubMedGoogle Scholar
  406. 406.
    Berman E, Heller G, Santorsa J, et al. Results of a randomized trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukemia. Blood. 1991;77:1666.PubMedGoogle Scholar
  407. 407.
    Wiernik PH, Banks PLC, Case Jr DC, et al. Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia. Blood. 1992;79:313.PubMedGoogle Scholar
  408. 408.
    Avvisati G, Mandelli F, Petti MC, et al. Idarubicin (4-demethoxy-daunorubicin) as a single agent for remission induction of previously untreated acute promyelocytic leukemia: a pilot study of the Italian cooperative group GIMEMA. Eur J Haematol. 1990;44:257.PubMedCrossRefGoogle Scholar
  409. 409.
    Avvisati G, LoCoco F, Diverio D, et al. AIDA (all-trans retinoic acid  +  idarubicin) in newly diagnosed acute promyelocytic leukemia: A Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) pilot study. Blood. 1996;88:1390–8.PubMedGoogle Scholar
  410. 410.
    Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RARα-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana de Ematologia ed Oncologia Pediatria Cooperative Groups. Blood. 1997;90:1014–21.PubMedGoogle Scholar
  411. 411.
    Sanz MA, Martín G, Rayón C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemia efficacy and reduced toxicity in newly diagnosed PML/RARα-positive acute promyelocytic leukemia. PETHEMA group. Blood. 1999;94:3015–21.PubMedGoogle Scholar
  412. 412.
    Sanz MA, LoCoco F, Martín G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA Cooperative Groups. Blood. 2000;96:1247–53.PubMedGoogle Scholar
  413. 413.
    Sanz MA, Martín G, González M, et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid an anthracycline monotherapy: a multicenter study by the PETHEMA group. Blood. 2004;103:1237–43.PubMedCrossRefGoogle Scholar
  414. 414.
    Lengfelder E, Haferlach C, Saussele S, et al. High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: long-term results of the German AMLCG. Leukemia. 2009;23:2248–58.PubMedCrossRefGoogle Scholar
  415. 415.
    Tallman MS, Rowe JM. Acute promyelocytic leukemia: a paradigm for differentiation therapy with retinoic acid. Blood Rev. 1994;8:70.PubMedCrossRefGoogle Scholar
  416. 416.
    Haferlach T, Löffler H, Glass B, Gassmann W. Repeated complete remission in a patient with acute promyelocytic leukemia after treatment with 13-cis-retinoic acid first and with all-trans-retinoic acid in relapse. Clin Invest. 1993;71:774.CrossRefGoogle Scholar
  417. 417.
    Muindi J, Frankel S, Huselton C, et al. Clinical pharmacology of oral all-trans retinoic acid with acute promyelocytic leukemia. Cancer Res. 1992;52:2138.PubMedGoogle Scholar
  418. 418.
    Lefebvre P, Thomas G, Gourmel B, et al. Pharmacokinetics of oral all-trans retinoic acid with acute promyelocytic leukemia. Leukemia. 1991;5:1054.PubMedGoogle Scholar
  419. 419.
    Muindi J, Frankel S, Miller Jr WH, et al. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: Implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79:299.PubMedGoogle Scholar
  420. 420.
    Smith MA, Adamson PC, Balis FM, et al. Phase I trial and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients. J Clin Oncol. 1992;10:1666.PubMedGoogle Scholar
  421. 421.
    Meyskens Jr FL, Goodman GE, Alberts DS. 13-cis-retinoic acid: pharmacology, toxicology and clinical applications for the prevention and treatment of human cancer. Crit Rev Oncol Hematol. 1985;13:75.CrossRefGoogle Scholar
  422. 422.
    Brazzell RK, Vane FM, Ehmann CW, et al. Pharmacokinetics of isotretinoin during repetitive dosing to patients. Eur J Clin Pharmacol. 1983;24:69.CrossRefGoogle Scholar
  423. 423.
    Adamson PC, Balis FM, Smith MA, et al. Dose-dependent pharmacokinetics of all-trans-retinoic acid. J Natl Cancer Inst. 1992;84:1332.PubMedCrossRefGoogle Scholar
  424. 424.
    Schwartz EL, Hallam S, Gallagher RE, Wiernik PH. Inhibition of all-trans retinoic acid metabolism by fluconazole in vitro and in patients with acute promyelocytic leukemia. Mol Pharmacol. 1995;50:923.Google Scholar
  425. 425.
    Miller VA, Rigas JR, Muindi JRF, et al. Modulation of all-trans retinoic acid pharmacokinetics by liarozole. Cancer Chemother Pharmacol. 1994;34:522.PubMedCrossRefGoogle Scholar
  426. 426.
    Muindi JF, Scher HI, Rigas JR, et al. Elevated plasma lipid peroxide content correlates with rapid plasma clearance of all-trans-retinoic acid in patients with advanced cancer. Cancer Res. 1994;54:2125.PubMedGoogle Scholar
  427. 427.
    Agadir A, Cornic M, Lefebvre P, et al. All-trans retinoic acid pharmacokinetics and bioavailability in acute promyelocytic leukemia: Intracellular concentrations and biologic response relationship. J Clin Oncol. 1995;13:2517.PubMedGoogle Scholar
  428. 428.
    Degos L, Chomienne C, Daniel MT, et al. All-trans-retinoic acid treatment for patients with acute promyelocytic leukemia. In: Saurat J-H, editor. Retinoids: 10 years on. Basel: Karger; 1991. p. 121.Google Scholar
  429. 429.
    Chen Z-X, Xue Y-Q, Zhang R, et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood. 1991;78:1413.PubMedGoogle Scholar
  430. 430.
    Vahdat L, Maslak P, Miller Jr W, et al. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: Impact of leukocytosis, low-dose chemotherapy, PML/RAR-α isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood. 1994;84:3843.PubMedGoogle Scholar
  431. 431.
    Fenaux P, Degos L. Treatment of acute promyelocytic leukemia with all trans retinoic acid. Leuk Res. 1991;8:655.CrossRefGoogle Scholar
  432. 432.
    Fenaux P, Castaigne S, Dombret H, et al. All-trans retinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia: A pilot study on 26 cases. Blood. 1992;80:2176.PubMedGoogle Scholar
  433. 433.
    Fenaux P, Le Deley MC, Castaigne S, et al. Effect of all trans retinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. Blood. 1993;82:3241.PubMedGoogle Scholar
  434. 434.
    Fenaux P, Chevret S, Guerci A, et al. Long-term follow-up confirms the benefit of all-trans retinoic acid in acute promyelocytic leukemia. Leukemia. 2000;14:1371.PubMedCrossRefGoogle Scholar
  435. 435.
    Kawai Y, Watanabe K, Kizaki M, et al. Rapid improvement of coagulopathy by all-trans retinoic acid in acute promyelocytic leukemia. Am J Hematol. 1994;46:184.PubMedCrossRefGoogle Scholar
  436. 436.
    Kanamaru A, Takemoto Y, Tanimoto M, et al. All-trans retinoic acid for the treatment of newly diagnosed acute promyelocytic leukemia. Blood. 1995;85:1202.PubMedGoogle Scholar
  437. 437.
    Burnett AK, Grimwade D, Solomon E, et al. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood. 1999;93:4131.PubMedGoogle Scholar
  438. 438.
    Estey E, Koller C, Cortes J, et al. Treatment of newly-diagnosed acute promyelocytic leukemia with liposomal all-trans retinoic acid. Leuk Lymphoma. 2001;42:309.PubMedCrossRefGoogle Scholar
  439. 439.
    Douer D, Estey E, Santillana S, et al. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood. 2001;97:73.PubMedCrossRefGoogle Scholar
  440. 440.
    Warrell Jr RP, Maslak P, Eardley A, et al. Treatment of acute promyelocytic leukemia with all-trans retinoic acid: an update of the New York experience. Leukemia. 1994;8 Suppl 2:S33.PubMedGoogle Scholar
  441. 441.
    de Botton S, Chevret S, Coiteux V, et al. Early onset of chemotherapy can reduce the incidence of ATRA syndrome in newly diagnosed acute promyelocytic leukemia (APL) with low white blood cell counts: results from APL 93 trial. Leukemia. 2003;17:339–42.PubMedCrossRefGoogle Scholar
  442. 442.
    Visani G, Tosi P, Cenacchi A, et al. Pre-treatment with all-trans retinoic acid accelerates polymorphonuclear recovery after chemotherapy in patients with acute promyelocytic leukemia. Leuk Lymphoma. 1994;15:143.PubMedCrossRefGoogle Scholar
  443. 443.
    de la Serna J, Montesinos P, Vellenga E, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood. 2008;111:3395–402.PubMedCrossRefGoogle Scholar
  444. 444.
    Castaigne S, Lefebvre P, Chomienne C, et al. Effectiveness and pharmacokinetics of low-dose all-trans retinoic acid (25 mg/m2) in acute promyelocytic leukemia. Blood. 1993;82:3560.PubMedGoogle Scholar
  445. 445.
    Fenaux P, Chastang C, Chomienne C, et al. Treatment of newly diagnosed acute promyelocytic leukemia (APL) by all transretinoic acid (ATRA) combined with chemotherapy: The European experience. Leuk Lymphoma. 1995;16:431.PubMedCrossRefGoogle Scholar
  446. 446.
    Fenaux P, Chastange C, Chevret S, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL group. Blood. 1999;94:1192–200.PubMedGoogle Scholar
  447. 447.
    Adẻs L, Guerci A, Raffoux E, et al. Very long-term outcome of acute promyelocytic after treatment with all-trans retinoic acid and chemotherapy: the European APL long experience. Blood. 2010;115:1690–6.PubMedCrossRefGoogle Scholar
  448. 448.
    Levin A, Sturzenbecker L, Kazmer S, et al. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature. 1992;355:359.PubMedCrossRefGoogle Scholar
  449. 449.
    Tobita T, Takeshita A, Kitamura K, et al. Treatment with a new synthetic retinoid, AN80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid. Blood. 1997;90:967–73.PubMedGoogle Scholar
  450. 450.
    Shinjo K, Takeshita A, Ohnishi K, et al. Good prognosis of patients with acute promyelocytic leukemia who achieved second complete remission (CR) with a new retinoid, AM80, after relapse from CR induced by all-trans-retinoic acid. Int J Hematol. 2000;72:470–3.PubMedGoogle Scholar
  451. 451.
    Di Veroli A, Ramadan SM, Divona M, et al. Molecular remission in advanced acute promyelocytic leukaemia after treatment with the oral synthetic retinoid Tamibarotene. Br J Haematol. 2010;151(1):99–101.PubMedCrossRefGoogle Scholar
  452. 452.
    Visani G, Zauli G, Ottaviani E, et al. All-trans retinoic acid potentiates megakaryocyte colony formation: In vitro and in vivo effects after administration to acute promyelocytic leukemia patients. Leukemia. 1994;8:2183.PubMedGoogle Scholar
  453. 453.
    Visani G, Ottaviani E, Zauli G, et al. All-trans retinoic acid at low concentration directly stimulates normal adult megakaryocytopoiesis in the presence of thrombopoietin or combined cytokines. Eur J Haematol. 1999;63:149.PubMedCrossRefGoogle Scholar
  454. 454.
    Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood. 2001;97:3919.PubMedCrossRefGoogle Scholar
  455. 455.
    Gianni M, Kalac Y, Ponzanelli I, et al. Tyrosine kinase inhibitor STI571 potentiates the pharmacologic activity of retinoic acid in acute promyelocytic leukemia cells: Effects on the degradation of RARα and PML-RARα. Blood. 2001;97:3234.PubMedCrossRefGoogle Scholar
  456. 456.
    Sassano A, Katsoilidis E, Antico G, et al. Suppressive effects of statins on acute promyelocytic leukemia cells. Cancer Res. 2007;67:4524–32.PubMedCrossRefGoogle Scholar
  457. 457.
    Tomiyama N, Matzno S, Kitada C, et al. The possibility of simvastatin as a chemotherapeutic agent for all-trans retinoic acid-resistant promyelocytic leukemia. Biol Pharm Bull. 2008;31:369–74.PubMedCrossRefGoogle Scholar
  458. 458.
    Frankel SR, Eardley A, Lauwers G, et al. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med. 1992;117:292.PubMedGoogle Scholar
  459. 459.
    Tallman MS, Andersen JW, Schiffer CA, et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood. 2000;95:90–5.PubMedGoogle Scholar
  460. 460.
    Montesinos P, Bergua M, Vellenga E, et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood. 2009;113:775–83.PubMedCrossRefGoogle Scholar
  461. 461.
    Jeddi R, Ghédira H, Amor RB, et al. Recurrent differentiation syndrome or septic shock? Unresolved dilemma in a patient with acute promyelocytic leukemia. Med Oncol. 2011;28(1):279–81.PubMedCrossRefGoogle Scholar
  462. 462.
    Wiley JS, Firkin FC. Reduction of pulmonary toxicity by prednisolone prophylaxis during all-trans retinoic acid treatment of acute promyelocytic leukemia. Australian Leukemia Study Group. Leukemia. 1995;9:774–8.PubMedGoogle Scholar
  463. 463.
    Raanani P, Segal E, Levi I, et al. Diffuse alveolar hemorrhage in acute promyelocytic leukemia patients treated with ATRA- a manifestation of the basic disease or the treatment. Leuk Lymphoma. 2000;37:605–10.PubMedCrossRefGoogle Scholar
  464. 464.
    Saiki I, Fujii H, Yeneda J, et al. Role of aminopeptidase N (CD13) in tumor cell invasion and extracellular matrix degeneration. Intl J Cancer. 1993;54:137.CrossRefGoogle Scholar
  465. 465.
    Cunha de Santis G, Tamarozzi MB, Sousa RB, et al. Adhesion molecules and differentiation syndrome: phenotypic and functional analysis of the effect of ATRA, As2O3, phenylbutyrate, and G-CSF in acute promyelocytic leukemia. Haematologica. 2007;92:1615–22.PubMedCrossRefGoogle Scholar
  466. 466.
    Luesink M, Pennings JL, Wissink WM, et al. Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome. Blood. 2009;114:5512–21.PubMedCrossRefGoogle Scholar
  467. 467.
    Luesink M, Jansen JH. Advances in understanding the pulmonary infiltration in acute promyelocytic leukaemia. Br J Haematol. 2010;151(3):209–20.PubMedCrossRefGoogle Scholar
  468. 468.
    Csomós K, Nẻmet I, Fésűs L, Balajithy Z. Tissue transglutaminase contributes to the all-trans retinoic acid induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia. Blood. 2010;116(19):3933–43.PubMedCrossRefGoogle Scholar
  469. 469.
    Hakimian D, Tallman MS, Zugerman C, et al. Erythema nodosum associated with all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Leukemia. 1993;7:758.PubMedGoogle Scholar
  470. 470.
    Gallipoli P, Drummond MW. Pseudotumour cerebri as a manageable side effect of prolonged all-trans retinoic acid therapy in an adult patient with acute promyelocytic leukaemia. Eur J Haematol. 2009;82:242–3.PubMedCrossRefGoogle Scholar
  471. 471.
    Kesler A, Kliper E, Assayag EB, et al. Thrombophilic factors in idiopathic intracranial hypertension: a report of 51 patients and a meta-analysis. Blood Coagul Fibrinolysis. 2010;21:328–33.PubMedCrossRefGoogle Scholar
  472. 472.
    Shirono K, Kiyofuji C, Tsuda H. Sweet’s syndrome in a patient with acute promyelocytic leukemia during treatment with alltrans retinoic acid. Int J Hematol. 1995;62:183.PubMedCrossRefGoogle Scholar
  473. 473.
    Christ E, Linka A, Jacky E, et al. Sweet’s syndrome involving the musculoskeletal system during treatment of promyelocytic leukemia with all-trans retinoic acid. Leukemia. 1996;10:731.PubMedGoogle Scholar
  474. 474.
    Torromeo C, Latagliata R, Avvisati G, et al. Intraventricular thrombosis during all-trans retinoic acid treatment in acute promyelocytic leukemia. Leukemia. 2000;15:1311.CrossRefGoogle Scholar
  475. 475.
    Losada R, Espinosa E, Hernandez C, et al. Thrombocytosis in patients with acute promyelocytic leukaemia during all-trans retinoic acid treatment. Br J Haematol. 1996;95:704.PubMedCrossRefGoogle Scholar
  476. 476.
    Kentos A, Le Moine F, Crenier L, et al. All-trans retinoic acid induced thrombocytosis in a patient with acute promyelocytic leukaemia. Br J Haematol. 1997;97:685.PubMedGoogle Scholar
  477. 477.
    Montesinos P, Gozález JD, Gozález J, et al. Therapy-related myeloid neoplasms in patients with acute promyelocytic leukemia treated with all-trans-retinoic acid and anthracycline-based chemotherapy. J Clin Oncol. 2010;28:3872–9.PubMedCrossRefGoogle Scholar
  478. 478.
    Gore SD, Gojo I, Sekeres MA, et al. Single cycle of arsenic trioxide-based consolidation chemotherapy spares anthracycline exposure in the primary management of acute promyelocytic leukemia. J Clin Oncol. 2010;28:1047–53.PubMedCrossRefGoogle Scholar
  479. 479.
    Dai CW, Zhang GS, Shen JK, et al. Use of all-trans retinoic acid in combination with arsenic trioxide for remission induction in patients with newly diagnosed acute promyelocytic leukemia and for consolidation/maintenance in CR patients. Acta Haematol. 2009;121:1–8.PubMedCrossRefGoogle Scholar
  480. 480.
    Hu J, Liu YF, Wu CF, et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA. 2009;106:3342–7.PubMedCrossRefGoogle Scholar
  481. 481.
    Rvandi F, Estey E, Jones D, et al. Effective treatment of acute promyelocytic leukemia with all-trans retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J Clin Oncol. 2009;27:504–10.CrossRefGoogle Scholar
  482. 482.
    Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood. 2006;108:3469–73.CrossRefGoogle Scholar
  483. 483.
    Zhou J, Zhang Y, Li J, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010;115:1697–702.PubMedCrossRefGoogle Scholar
  484. 484.
    Mathews V, George B, Chendamarai E, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol. 2010;28:3866–71.PubMedCrossRefGoogle Scholar
  485. 485.
    Powell BL, Moser B, Stock W, et al. Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup study C9710. Blood. 2010;116(19):3751–7.PubMedCrossRefGoogle Scholar
  486. 486.
    Yedjou C, Thuisseu L, Tchounwou C, et al. Ascorbic acid potentiation of arsenic trioxide anticancer activity against acute promyelocytic leukemia. Arch Drug Inf. 2009;2:59–65.PubMedCrossRefGoogle Scholar
  487. 487.
    Chang JE, Voorhees PM, Kolesar JM, et al. Phase II study of arsenic trioxide and ascorbic acid for relapsed or refractory lymphoid malignancies: Wisconsin Oncology Network study. Hematol Oncol. 2009;27:11–6.PubMedCrossRefGoogle Scholar
  488. 488.
    Kuroki M, Ariumi Y, Ikeda M, et al. Arsenic trioxide inhibits hepatitis C virus RNA replication through modulation of the glutathione redox system and oxidative stress. J Virol. 2009;83:2338–48.PubMedCrossRefGoogle Scholar
  489. 489.
    Avvisanti G, Lo Coco F, Diverio D, et al. AIDA (all-trans retinoic acid  +  idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) pilot study. Blood. 1996;88:1390–8.Google Scholar
  490. 490.
    Avvisati G, Petti MC, Lo-Coco F, et al. Induction therapy with idarubicin alone significantly influences event-free survival duration in patients with newly diagnosed hypergranular acute promyelocytic leukemia: final results of the GIMEMA randomized study LAP 0389 with 7 years minimal follow-up. Blood. 2002;100:3141–6.PubMedCrossRefGoogle Scholar
  491. 491.
    Sanz MA, Lo Coco F, Martín G. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PTHEMA and HIMEMA cooperative groups. Blood. 2000;96:1247–53.PubMedGoogle Scholar
  492. 492.
    Lengfelder E, Haerlach C, Saussele S, et al. High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: long-term results of the German AMLCG. Leukemia. 2009;23:2248–58.PubMedCrossRefGoogle Scholar
  493. 493.
    Adẻs L, Sanz MA, Chevret S, et al. Treatment of newly diagnosed acute promyelocytic leukemia (APL): a comparison of French-Belgian-Swiss and PETHEMA results. Blood. 2008;111:1078–84.PubMedCrossRefGoogle Scholar
  494. 494.
    Kelaidi C, Chevret S, De Botton S, et al. Improved outcome of acute promyelocytic leukemia with high WBC counts over the last 15 years: the European APL Group experience. J Clin Oncol. 2009;27:2668–76.PubMedCrossRefGoogle Scholar
  495. 495.
    Dutcher JP, Wiernik PH, Markus S, et al. Intensive maintenance therapy improves survival in adult acute nonlymphocytic leukemia: an eight-year follow-up. Leukemia. 1988;2:413.PubMedGoogle Scholar
  496. 496.
    Kantarjian HM, Keating MJ, Walters RS, et al. Role of maintenance chemotherapy in acute promyelocytic leukemia. Cancer. 1987;59:1258.PubMedCrossRefGoogle Scholar
  497. 497.
    Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337:1021.PubMedCrossRefGoogle Scholar
  498. 498.
    Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia: Long-term outcome results and prognostic factor analysis from the North American Inter- group protocol. Blood. 2002;100:4298.PubMedCrossRefGoogle Scholar
  499. 499.
    Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARα transcript after consolidation therapy: Japan Adilt Leukemia Study Group (JALSG) APL97 study. Blood. 2007;110:59–66.PubMedCrossRefGoogle Scholar
  500. 500.
    Grimwade D, Jovanovic JV, Hills RK, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27:3650–2358.PubMedCrossRefGoogle Scholar
  501. 501.
    Lo Coco F, Diverio D, Avvisati G, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood. 1999;94:2225.PubMedGoogle Scholar
  502. 502.
    Esteve J, Escoda L, Martín G, et al. Outcome of patients with acute promyelocytic leukemia failing to frontline treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia. 2007;21:446–52.PubMedCrossRefGoogle Scholar
  503. 503.
    Cortes JE, Kantarjian H, O’Brien S, et al. All-trans retinoic acid followed by chemotherapy for salvage of refractory or relapsed acute promyelocytic leukemia. Cancer. 1994;73:2946.PubMedCrossRefGoogle Scholar
  504. 504.
    Miller Jr WH, Jakubowski A, Tong WP, et al. 9-cis retinoic acid induces complete remission but does not reverse clinically acquired retinoid resistance in acute promyelocytic leukemia. Blood. 1995;85:3021.PubMedGoogle Scholar
  505. 505.
    Soignet SL, Benedetti F, Fleishauer A, et al. Clinical study of 9-cis retinoic acid (LGD1057) in acute promyelocytic leukemia. Leukemia. 1998;12:15118.CrossRefGoogle Scholar
  506. 506.
    Takeshita A, Shibata Y, Shinjo K, et al. Successful treatment of relapse of acute promyelocytic leukemia with a new synthetic retinoid, Am80. Ann Intern Med. 1996;124:893.PubMedGoogle Scholar
  507. 507.
    Warrell Jr RP, He LZ, Richon V, et al. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst. 1998;90:1621.PubMedCrossRefGoogle Scholar
  508. 508.
    Thomas X, Dombret H, Cordonnier C, et al. Treatment of relapsing acute promyelocytic leukemia by all-trans retinoic acid therapy followed by timed sequential chemotherapy and stem cell transplantation. Leukemia. 2000;14:1006.PubMedCrossRefGoogle Scholar
  509. 509.
    Jurcic JG, DeBlasio T, Dumont L, et al. Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res. 2000;6:372.PubMedGoogle Scholar
  510. 510.
    Aulde J. A study of the pharmacology and therapeutics of arsenic. NY Med J. 1891;53:390.Google Scholar
  511. 511.
    Shen ZX, Chen GQ, Ni JH, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354.PubMedGoogle Scholar
  512. 512.
    Soignet SL, Maslak P, Wang Z-G, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 1998;339:1341.PubMedCrossRefGoogle Scholar
  513. 513.
    Niu C, Yan H, Yu T, et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: Remission induction, followup, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood. 1999;94:3315.PubMedGoogle Scholar
  514. 514.
    Huang S-Y, Yang C-H, Chen Y-C. Arsenic trioxide therapy for relapsed acute promyelocytic leukemia: An (sic) useful salvage therapy. Leuk Lymphoma. 2000;38:283.CrossRefGoogle Scholar
  515. 515.
    Camacho LH, Soignet SL, Chanel S, et al. Leukocytosis and the retinoic acid syndrome in patients with acute promyelocytic leukemia treated with arsenic trioxide. J Clin Oncol. 2000;18:2620.PubMedGoogle Scholar
  516. 516.
    Lin C-P, Huang M-J, Chang IY, et al. Retinoic acid syndrome induced by arsenic trioxide in treating recurrent all-trans retinoic acid resistant acute promyelocytic leukemia. Leuk Lymphoma. 2000;38:195.PubMedGoogle Scholar
  517. 517.
    Ohnishi K, Yoshida H, Shigeno K, et al. Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia. Ann Intern Med. 2000;133:881.PubMedGoogle Scholar
  518. 518.
    Unnikrishnan D, Dutcher JP, Varshneya N, et al. Torsades de pointes in 3 patients with leukemia treated with arsenic trioxide. Blood. 2001;97:1514.PubMedCrossRefGoogle Scholar
  519. 519.
    Naito K, Kobayashi M, Sahara N, et al. Two cases of acute promyelocytic leukemia complicated by torsade de pointes during arsenic trioxide therapy. Int J Hematol. 2006;83:318–23.PubMedCrossRefGoogle Scholar
  520. 520.
    Westervelt P, Brown RA, Adkins DR, et al. Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide. Blood. 2001;98:266.PubMedCrossRefGoogle Scholar
  521. 521.
    Raghu KG, Yadav GK, Singh R, et al. Evaluation of adverse cardiac events induced by arsenic trioxide, a potent anti-APL drug. J Environ Pathol Toxicol Oncol. 2009;28:241–52.PubMedCrossRefGoogle Scholar
  522. 522.
    Kwong YL, Au WY, Chim CS, et al. Arsenic trioxide- and idarubicin-induced remissions in relapsed acute promyelocytic leukemia: Clinicopathological and molecular features of a pilot study. Am J Hematol. 2001;66:274.PubMedCrossRefGoogle Scholar
  523. 523.
    Jing Y, Wang L, Xia L, et al. Combined effects of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood. 2001;97:264.PubMedCrossRefGoogle Scholar
  524. 524.
    Muto A, Kizaki M, Kawamura C, et al. A novel differentiation- inducing therapy for acute promyelocytic leukemia with a combination of arsenic trioxide and GM-CSF. Leukemia. 2001;15:1176.PubMedCrossRefGoogle Scholar
  525. 525.
    Thirugnanam R, George B, Chendamarai E, et al. Comparison of clinical outcomes of patients with relapsed acute promyelocytic leukemia induced with arsenic trioxide and consolidated with either an autologous stem cell transplant or an arsenic trioxide-based regimen. Biol Blood Marrow Transplant. 2009;15:1479–84.PubMedCrossRefGoogle Scholar
  526. 526.
    Thomas X, Pigneux A, Raffoux E, et al. Superiority of an arsenic trioxide-based regimen over a historic control combining all-trans retinoic acid plus intensive chemotherapy in the treatment of relapsed acute promyelocytic leukemia. Haematologica. 2006;91:996–7.PubMedGoogle Scholar
  527. 527.
    Shigeno K, Naito K, Sahara N, et al. Arsenic trioxide therapy in relapsed or refractory Japanese patients with acute promyelocytic leukemia: updated outcomes of the phase II study and postremission therapies. Int J Hematol. 2005;82:224–9.PubMedCrossRefGoogle Scholar
  528. 528.
    Raffoux E, Rousselot P, Poupon J, et al. Combined treatment with arsenic trioxide and all-trans retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol. 2003;21:2326–34.PubMedCrossRefGoogle Scholar
  529. 529.
    Lazo G, Kantarjian H, Estey E, et al. Use of arsenic trioxide (As2O3) in the treatment of patients with acute promyelocytic leukemia: the M.D. Anderson experience. Cancer. 2003;97:2218–24.PubMedCrossRefGoogle Scholar
  530. 530.
    Visani G, Piccaluga PP, Martinelli G, et al. Sustained molecular remission in advanced acute promyelocytic leukemia with combined pulsed retinoic acid and arsenic trioxide. Clinical evidence of synergistic effect and real-time quantification of minimal residual disease. Haematologica. 2003;88:15.Google Scholar
  531. 531.
    de Botton S, Fawaz A, Chevret S, et al. Autologous and allogeneic stem-cell transplantation as salvage treatment of acute promyelocytic leukemia initially treated with all-trans-retinoic acid: a retrospective analysis of the European acute promyelocytic leukemia group. J Clin Oncol. 2005;23:120–6.PubMedCrossRefGoogle Scholar
  532. 532.
    Termuhlen AM, Klopfenstein K, Olshefski R, et al. Mobilization of PML-RARA negative blood stem cells and salvage with autologous peripheral blood stem cell transplantation in children with relapsed acute promyelocytic leukemia. Pediatr Blood Cancer. 2008;51:521–4.PubMedCrossRefGoogle Scholar
  533. 533.
    Yang D, Hladnik L. Treatment of acute promyelocytic leukemia during pregnancy. Pharmacotherapy. 2009;29:709–24.PubMedCrossRefGoogle Scholar
  534. 534.
    Ganzitti L, Fachechi G, Driul L, Marchesoni D. Acute promyelocytic leukemia during pregnancy. Fertil Steril. 2010;94(6):2330.PubMedCrossRefGoogle Scholar
  535. 535.
    Valappil S, Kurkar M, Howell R. Outcome of pregnancy in women treated with all-trans retinoic acid; a case report and review of the literature. Hematology. 2007;12:415–8.PubMedCrossRefGoogle Scholar
  536. 536.
    Ammatuna E, Cavaliere A, Divona M, et al. Successful pregnancy after arsenic trioxide therapy for relapsed acute promyelocytic leukaemia. Br J Haematol. 2009;146:341.PubMedCrossRefGoogle Scholar
  537. 537.
    Hoffman MA, Wiernik PH, Kleiner GJ. Acute promyelocytic leukemia and pregnancy. A case report. Cancer. 1995;76:2237.PubMedCrossRefGoogle Scholar
  538. 538.
    Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European Leukemia Net. Blood. 2009;113:1875–91.PubMedCrossRefGoogle Scholar
  539. 539.
    Tallman MS, Kwaan HC. Reassessing the hemostatic disorder associated with acute promyelocytic leukemia. Blood. 1992;79:543.PubMedGoogle Scholar
  540. 540.
    Barbui T, Finazzi G, Falanga A. The impact of all-trans-retinoic acid on the coagulopathy of acute promyelocytic leukemia. Blood. 1998;91:3093.PubMedGoogle Scholar
  541. 541.
    Gralnick HR, Bagley J, Abrell E. Heparin treatment for the hemorrhagic diathesis of acute promyelocyte leukemia. Am J Med. 1972;52:167.PubMedCrossRefGoogle Scholar
  542. 542.
    Jones ME, Saleem A. Acute promyelocytic leukemia: a review of the literature. Am J Med. 1978;65:673.PubMedCrossRefGoogle Scholar
  543. 543.
    Cordonnier C, Vernant JP, Brun B, et al. Acute promyelocytic leukemia in 57 previously untreated patients. Cancer. 1985;55:18.PubMedCrossRefGoogle Scholar
  544. 544.
    Cunningham I, Gee TS, Reich LM, et al. Acute promyelocytic leukemia: treatment results during a decade at Memorial Hospital. Blood. 1989;72:1116.Google Scholar
  545. 545.
    Rodeghiero F, Avvisati G, Castaman G, et al. Early deaths and antihemorrhagic treatments in acute promyelocytic leukemia. A GIMEMA retrospective study of 268 consecutive patients. Blood. 1990;75:2112.PubMedGoogle Scholar
  546. 546.
    Goldberg MA, Ginsburg D, Mayer RJ, et al. Is heparin administration necessary during induction chemotherapy for patients with acute promyelocytic leukemia? Blood. 1987;69:187.PubMedGoogle Scholar
  547. 547.
    Bennett JM, Young ML, Andersen JW, et al. Long-term survival in acute myeloid leukemia: The Eastern Cooperative Oncology Group Experience. Cancer. 1997;80:2205.PubMedCrossRefGoogle Scholar
  548. 548.
    Dombret H, Scrobohaci ML, Zini JM, et al. Coagulation disorders associated with acute promyelocytic leukemia: Corrective effect of all-trans retinoic acid treatment. Leukemia. 1993;7:2.PubMedGoogle Scholar
  549. 549.
    Watanabe R, Murata M, Takayama N, et al. Long-term follow-up of hemostatic molecular markers during remission induction therapy with all-trans retinoic acid for acute promyelocytic leukemia. Keio Hematology-Oncology Cooperative Study Group (KHOCS). Thromb Haemost. 1997;77:641.PubMedGoogle Scholar
  550. 550.
    Dombret H, Scrobohaci ML, Daniel MT, et al. In vivo thrombin and plasmin activities in patients with acute promyelocytic leukemia (APL): Effect of all-trans retinoic acid (ATRA) therapy. Leukemia. 1995;9:19.PubMedGoogle Scholar
  551. 551.
    Tallman MS, Lefẻbvre P, Baine RM, et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost. 2004;2:1341–50.PubMedCrossRefGoogle Scholar
  552. 552.
    Zhang P, Wang SY, Hu XH. Arsenic trioxide treated 72 cases of acute promyelocytic leukemia. Chin J Hematol. 1995;16:26.Google Scholar
  553. 553.
    Sanz MA, Jarque I, Martin G, et al. Acute promyelocytic leukemia. Therapy results and prognostic factors. Cancer. 1988;61:7.PubMedCrossRefGoogle Scholar
  554. 554.
    Fenaux P, Pollet JP, Vandenbossche-Simon L, et al. Treatment of acute promyelocytic leukemia: a report of 70 cases. Leuk Lymphoma. 1990;4:239.CrossRefGoogle Scholar
  555. 555.
    Fenaux P, Tertian G, Castaigne S, et al. A randomized trial of amsacrine and rubidazone in 39 patients with acute promyelocytic leukemia. J Clin Oncol. 1991;9:1556.PubMedGoogle Scholar
  556. 556.
    Gralnick HR, Sultan C. Acute promyelocytic leukemia: hemorrhagic manifestations and morphologic criteria. Br J Haematol. 1975;29:373.PubMedCrossRefGoogle Scholar
  557. 557.
    Groopman J, Ellman L. Acute promyelocytic leukemia. Am J Hematol. 1979;7:395.PubMedCrossRefGoogle Scholar
  558. 558.
    Collins AJ, Bloomfield CD, Peterson BA, et al. Acute promyelocytic leukemia: management of the coagulopathy during daunorubicin-prednisone remission induction. Arch Int Med. 1978;138:1677.CrossRefGoogle Scholar
  559. 559.
    Bennett B, Booth NA, Croll A, Dawson AA. The bleeding disorder in acute promyelocytic leukemia: fibrinolysis due to u-PA rather than defibrination. Br J Haematol. 1989;71:511.PubMedCrossRefGoogle Scholar
  560. 560.
    Bennett M, Parker AC, Ludlam CA. Platelet and fibrinogen survival in acute promyelocytic leukemia. Br Med J. 1976;2:565.PubMedCrossRefGoogle Scholar
  561. 561.
    Nemerson Y. Tissue factor and hemostasis. Blood. 1988;71:1.PubMedGoogle Scholar
  562. 562.
    Bauer KA, Conway EM, Bach R, et al. Tissue factor gene expression in acute myeloblastic leukemia. Thromb Res. 1989;50:425.CrossRefGoogle Scholar
  563. 563.
    Andoh K, Sadakata H, Uchiyama T, et al. One-stage method for assay of tissue factor activity of leukemic cells with special reference to disseminated intravascular coagulation. Am J Clin Pathol. 1990;93:679.PubMedGoogle Scholar
  564. 564.
    Kubota T, Andoh T, Sadakata H, et al. Tissue factor released from leukemic cells. Thromb Haemost. 1991;65:59.PubMedGoogle Scholar
  565. 565.
    Gordon SG, Franks JJ, Lewis B. Cancer procoagulant A: a factor X activating procoagulant from malignant tissue. Thromb Res. 1975;6:127.PubMedCrossRefGoogle Scholar
  566. 566.
    Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant A: a cystine proteinase from malignant tissue. Biochemistry. 1985;24:5558.PubMedCrossRefGoogle Scholar
  567. 567.
    Donati MB, Falanga A, Consonni R, et al. Cancer procoagulant in acute nonlymphoid leukemia: relationship of enzyme detection to disease activity. Thromb Haemost. 1990;64:11.PubMedGoogle Scholar
  568. 568.
    Bevilacqua MP, Pober JS, Majeau GR, et al. Interleukin-1 expression activity of procoagulant activity in human vascular endothelia cells. J Exp Med. 1984;160:618.PubMedCrossRefGoogle Scholar
  569. 569.
    Bevilacqua MP, Pober JS, Majeau GR, et al. Recombinant human tissue necrosis factor induces procoagulant activity in cultured human vascular endothelium. Characterization and comparison with interleukin-1. Proc Natl Acad Sci USA. 1986;83:4533.PubMedCrossRefGoogle Scholar
  570. 570.
    Nawroth PP, Handley D, Esmon CT, Stern DM. Interleukin-1 induces cell surface anticoagulant activity. Proc Natl Acad Sci USA. 1986;83:3460.PubMedCrossRefGoogle Scholar
  571. 571.
    Nawroth PP, Stern MD. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986;163:740.PubMedCrossRefGoogle Scholar
  572. 572.
    Clauss M, Gerlach M, Gerlach H, et al. Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity and promotes monocyte migration. J Exp Med. 1990;172:1535.PubMedCrossRefGoogle Scholar
  573. 573.
    Cozzolino F, Torcia M, Miliani A, et al. Potential role of interleukin-1 as the trigger for diffuse intravascular coagulation in acute nonlymphoblastic leukemia. Am J Med. 1988;84:240.PubMedCrossRefGoogle Scholar
  574. 574.
    Emeis JJ, Koastra T. Interleukin-1 and lipopolysaccharides induce an inhibitor of plasminogen activator in vivo and in human cultured endothelial cells. J Exp Med. 1986;163:1260.PubMedCrossRefGoogle Scholar
  575. 575.
    Nachman RL, Hajjar KA, Silverstein RL, Dinarello CA. Interleukin-1 induces endothelial cell synthesis of plasminogen activator inhibitor. J Exp Med. 1996;163:1595.CrossRefGoogle Scholar
  576. 576.
    Miyauchi S, Morohama T, Kyoizumi S, et al. Malignant tumor cell lines produce interleukin-1-like factor in vivo. In Vitro Cell Dev Biol. 1988;24:753.PubMedCrossRefGoogle Scholar
  577. 577.
    Noguchi M, Sakai T, Kisiel W. Identification and partial purification of novel tumor-derived protein that induces tissue factor in cultured human endothelial cells. Biochem Biophys Res Commun. 1989;160:222.PubMedCrossRefGoogle Scholar
  578. 578.
    Chan TK, Chan GT, Chan V. Hypofibrinogenemia due to increased fibrinolysis in two patients with acute promyelocytic leukemia. Aust NZ J Med. 1984;14:245.CrossRefGoogle Scholar
  579. 579.
    Sterrenberg L, Haak HL, Brommer EJP, Nieuwenhuizen W. Evidence of fibrinogen breakdown by leukocyte enzymes in a patient with acute promyelocytic leukemia. Haemostasis. 1985;15:126.PubMedGoogle Scholar
  580. 580.
    Schwartz BS, Williams EC, Conlan MG, Mosher DF. Epsilon-aminocaproic acid in the treatment of patients with acute promyelocytic leukemia and acquired alpha-2-plasmin inhibitor deficiency. Ann Intern Med. 1986;105:873.PubMedGoogle Scholar
  581. 581.
    Velasco F, Torres A, Andres P, et al. Changes in plasma levels of protease and fibrinolytic inhibitors induced by treatment of acute promyelocytic leukemia. Thromb Haemost. 1984;52:81.PubMedGoogle Scholar
  582. 582.
    Wilson EL, Jacobs P, Dowdle EB. The secretion of plasminogen activators by human myeloid leukemia cells in vitro. Blood. 1983;61:568.PubMedGoogle Scholar
  583. 583.
    Sakata Y, Murakami T, Noro A, et al. The specific activity of plasminogen activator inhibitor-1 in disseminated intravascular coagulation with acute promyelocytic leukemia. Blood. 1991;77:1949.PubMedGoogle Scholar
  584. 584.
    Hirata F, Schiffman E, Venkatasubramanian K, et al. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci USA. 1980;77:2533.PubMedCrossRefGoogle Scholar
  585. 585.
    Chang KS, Wang G, Freireich EJ, et al. Specific expression of the annexin VIII gene in acute promyelocytic leukemia. Blood. 1992;79:1802.PubMedGoogle Scholar
  586. 586.
    Hajjar KA, Jacovina AT, Chacko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem. 1994;269:21191.PubMedGoogle Scholar
  587. 587.
    Menell JS, Cesarman GM, Jacovina AT, et al. Annexin II and bleeding in acute promyelocytic leukemia. N Engl J Med. 1999;340:994.PubMedCrossRefGoogle Scholar
  588. 588.
    Federici AR, Diamico EA. The role of von Willebrand factor in the hemostatic defect of acute promyelocytic leukemia. Leuk Lymphoma. 1998;31:491.PubMedGoogle Scholar
  589. 589.
    Runde V, Aul C, Heyll A, Schneider W. All-trans retinoic acid: not only a differentiating agent, but also an inducer of thromboembolic events in patients with M3 leukemia. Blood. 1992;79:534.PubMedGoogle Scholar
  590. 590.
    Escudier SM, Kantarjian HM, Estey EH. Thrombosis in patients with acute promyelocytic leukemia treated with and without alltrans retinoic acid. Leuk Lymphoma. 1996;20:435.PubMedCrossRefGoogle Scholar
  591. 591.
    Hashimoto S, Koike T, Tatewaki W, et al. Fatal thromboembolism in acute promyelocytic leukemia during all-trans retinoic acid therapy combined with antifibrinolytic therapy as prophylaxis of hemorrhage. Leukemia. 1994;8:1113.PubMedGoogle Scholar
  592. 592.
    Ishii H, Horie S, Kizaki K, Kazama M. Retinoic acid counteracts both the down-regulation of thrombomodulin and the induction of tissue factor in cultured human endothelial cells exposed to tumor necrosis factor. Blood. 1992;80:2556.PubMedGoogle Scholar
  593. 593.
    Rickles FR, Hair G, Schmeizel M, et al. All-trans-retinoic (ATRA) inhibits the expression of tissue factor in human progranulocytic. (Abstr). Haemost Thromb. 1993;69:107.Google Scholar
  594. 594.
    Falanga A, Iacoviello L, Evangelista V, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered alltrans-retinoic acid. Blood. 1995;86:1072.PubMedGoogle Scholar
  595. 595.
    De Stefano V, Teofili L, Sica S, et al. Effect of all-trans retinoic acid on procoagulant and fibrinolytic activities of cultured blast cells from patients with acute promyelocytic leukemia. Blood. 1995;86:3535.PubMedGoogle Scholar
  596. 596.
    Medh R, Santell L, Levin EG. Stimulation of tissue plasminogen activator production by retinoic acid: Synergistic effect on protein kinase c-mediated activation. Blood. 1992;80:981.PubMedGoogle Scholar
  597. 597.
    Lansink M, Kooistra T. Stimulation of tissue-type plasminogen activator expression by retinoic acid in human endothelial cells retinoic acid receptor β2 induction. Blood. 1996;88:531.PubMedGoogle Scholar
  598. 598.
    Falanga A, Consom R, Marchetti M, et al. Cancer procoagulant in the human promyelocytic cell line NB4 and its modulation by alltrans retinoic acid. Leukemia. 1994;8:156.PubMedGoogle Scholar
  599. 599.
    Tallman MS, Lefebrvre P, Cohen I, et al. Procoagulant, profibrinolytic and proinflammatory mediators in patients with previously untreated acute promyelocytic leukemia (APL). (Abstr). Blood. 1995;86:675.Google Scholar
  600. 600.
    Burnett AK, Goldstone AH, Gray RG, Wheatley K. All trans retinoic acid given concurrently with induction chemotherapy improves the outcome of APL: Results of the UK MRC ATRA trial. (Abstr). Blood. 1997;90:1474.Google Scholar
  601. 601.
    Avvisati G. AIDA protocol: the Italian way of treating APL (Abstr). Br J Haematol. 1998;102:593.Google Scholar
  602. 602.
    Asou N, Adachi K, Tamura J, et al. Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. J Clin Oncol. 1998;16:78.PubMedGoogle Scholar
  603. 603.
    Sanz MA, Martin G, Rayon C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RAR-alpha-positive acute promyelocytic leukemia. Blood. 1999;94:3015.PubMedGoogle Scholar
  604. 604.
    Zhu J, Guo WM, Yao YY, et al. Tissue factors on acute promyelocytic leukemia and endothelial cells are differently regulated by retinoic acid, arsenic trioxide and chemotherapeutic agents. Leukemia. 1999;13:1062.PubMedCrossRefGoogle Scholar
  605. 605.
    Sanz MA, Montesinos P. Open issues on bleeding and thrombosis in acute promyelocytic leukemia. Thromb Res. 2010;125 Suppl 2:S51–4.PubMedCrossRefGoogle Scholar
  606. 606.
    Slack JL, Rusiniak ME. Current issues in the management of acute promyelocytic leukemia. Ann Hematol. 2000;79:227.PubMedCrossRefGoogle Scholar
  607. 607.
    Avvisati G, Lo Coco F, Mandelli F. Acute promyelocytic leukemia: clinical and morphologic features and prognostic factors. Semin Hematol. 2001;38:4.PubMedCrossRefGoogle Scholar
  608. 608.
    Fenaux P, Chomienne C, Degos L. All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Semin Hematol. 2001;38:13.PubMedCrossRefGoogle Scholar
  609. 609.
    Lo-Coco F, Avvisati G, Vignetti M, et al. Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults patients younger than 61 years: results of the AIDA-2000 trial of the GIMEMA Group. Blood. 2010;116(17):3171–9.PubMedCrossRefGoogle Scholar
  610. 610.
    Xiang Y, Wang XB, Sun SJ, et al. Compound huangdai tablet as induction therapy for 193 patients with acute promyelocytic leukemia. Zhonghua Xue Ye Xue Za Zhi. 2009;30:440–2.PubMedGoogle Scholar
  611. 611.
    Furugaki K, Pokorna K, Le Pogam C, et al. DNA vaccination with all-trans retinoic acid treatment induces long-term survival and elicits specific immune responses requiring CD4+ and CD8+ T-cell activation in an acute promyelocytic leukemia mouse model. Blood. 2010;115:653–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Peter H. Wiernik
    • 1
  • Robert E. Gallagher
    • 2
  • Martin S. Tallman
    • 3
  1. 1.Leukemia Program, Cancer CenterSt. Lukes—Roosevelt and Beth Israel HospitalsNew YorkUSA
  2. 2.Department of OncologyAlbert Einstein/MontefioreBronxUSA
  3. 3.Memorial Sloan Kettering Cancer CenterWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations