Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 71))

  • 950 Accesses

Abstract

We have up to now mainly studied linear and quasilinear phenomena (with the exception for Sect. 6.10.4 in Chap. 6). Although quasilinear equations, in combination with an estimate of the saturation level, can be used to derive transport coefficients, it is important to go beyond this description in order to understand its region of applicability [1–83]. In particular nonlinear cascade rules [18, 20, 25, 26, 29, 30, 55] are important for the interplay between sources and sinks in k-space and the resulting saturation level and correlation length. We will thus here consider some simple nonlinear systems for turbulence in magnetized plasmas. We will also make a kinetic derivation of the diffusion coefficient which involves the turbulent transport itself as a decorrelation mechanism [3–5, 7, 8]. As we have pointed out in Chap. 3, the parallel ion motion may often be ignored in drift and flute modes. This is possible if \( \omega \, > > {{\hbox{k}}_{\parallel }}\,\,{{\hbox{c}}_{\rm{s}}} \). For this case it is possible to derive a simple but still rather general nonlinear equation for the ion vorticity Ω = rot v i . We start from the fluid equation of motion for ions

$$ \frac{{\partial {{{\mathbf{v}}}_i}}}{{\partial t}} + ({{{\mathbf{v}}}_i} \cdot \nabla ){{{\mathbf{v}}}_i} = \frac{e}{{{{m}_i}}}({\mathbf{E}} + {{{\mathbf{v}}}_i} \times {\mathbf{B}}) - \frac{1}{{{{m}_i}n}}\nabla {{P}_i} + {\mathbf{g}} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. B. Kadomtsev, Plasma Turbulence, Academic Press, New York 1965.

    Google Scholar 

  2. L.I. Rudakov, Sov. Phys. JETP 21, 917 (1965).

    MathSciNet  ADS  Google Scholar 

  3. T.H. Dupree, Phys. Fluids 10, 1049 (1967).

    Article  ADS  Google Scholar 

  4. T.H. Dupree, Phys. Fluids 9, 1773 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Weinstock, Phys. Fluids 12, 1045 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  6. B. B. Kadomtsev and O.P. Pogutse, in Reviews of Plasma Physics (Ed. M.A. Leontovitch) Consultant Bureau, New York, Vol. 5, p. 249 (1970).

    Google Scholar 

  7. J.B. Taylor and B. McNamara, Phys. Fluids 14, 1492 (1971).

    Article  ADS  Google Scholar 

  8. H. Okuda and J.M. Dawson, Phys. Fluids 16, 408 (1973).

    Article  ADS  Google Scholar 

  9. R.C. Davidson, Methods in Nonlinear Plasma Theory, Academic Press, New York 1972.

    Google Scholar 

  10. G. Joyce, D.C. Montgomery and F. Emery, Phys. Fluids 17, 110 (1974).

    Article  ADS  Google Scholar 

  11. A. Hasegawa, Plasma Instabilities and Nonlinear Effects, Springer, New York, 1975.

    Book  Google Scholar 

  12. J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interaction of Waves in Plasmas, Pergamon Press, Oxford 1977.

    Google Scholar 

  13. H. Sanuki, and G. Schmidt, J. Phys. Soc. Japan 42, 260 (1977).

    Article  ADS  Google Scholar 

  14. D. Fyfe and D. Montgomery, Phys. Fluids 22, 246 (1979).

    Article  ADS  Google Scholar 

  15. R.Z. Sagdeev, V.D. Shapiro and V.I. Shevchenko, Sov. J. Plasma Phys. 4, 306 (1978).

    Google Scholar 

  16. C.Z. Cheng and H. Okuda, Nuclear Fusion 18, 87 (1978).

    Article  Google Scholar 

  17. W. M. Tang, Nuclear Fusion 18, 1089 (1978).

    Article  ADS  Google Scholar 

  18. A. Hasagawa and K. Mima, Phys. Fluids 21, 87 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Chu and M.S. Chu and T. Ohkawa, Phys. Rev. Lett. 41, 653 (1978).

    Article  ADS  Google Scholar 

  20. A. Hasagawa, C.G. Maclennan and Y. Kodama, Phys. Fluids 22, 2122 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  21. A.B. Hassam and R. Kulsrud, Phys. Fluids 22, 2097 (1979).

    Article  ADS  Google Scholar 

  22. G. A. Navratil and R.S. Post, Comments on Plasma Physics and Controlled Fusion 5, 29 (1979).

    Google Scholar 

  23. K. Nozaki, T. Taniuti and K. Watanabe, J. Phys. Soc. Japan 46, 991 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Weiland, H. Sanuki, Phys. Lett. 72A, 23 (1979).

    MathSciNet  Google Scholar 

  25. V.P. Pavlenko and J. Weiland, Phys. Rev. Lett. 44, 148 (1980).

    Article  ADS  Google Scholar 

  26. V.P. Pavlenko and J. Weiland, Phys. Fluids 13, 408 (1980).

    MathSciNet  Google Scholar 

  27. J. Weiland, Phys. Rev. Lett. 44, 1411 (1980).

    Article  ADS  Google Scholar 

  28. H. Okuda, Phys. Fluids 23, 498 (1980).

    Article  ADS  Google Scholar 

  29. A. Hasagawa, H. Okuda and M. Wakatani, Phys. Rev. Lett. 44, 248 (1980).

    Article  ADS  Google Scholar 

  30. J. Weiland, H. Sanuki and C.S. Liu, Phys. Fluids 24, 93 (1981).

    Article  ADS  MATH  Google Scholar 

  31. M.Y. Yu, P.K. Shukla and H.U. Rahman, J. Plasma Phys. 26, 359 (1981).

    Article  ADS  Google Scholar 

  32. P.K. Shukla, M.Y. Yu, H.U. Rahman and K.H. Spatschek, Phys. Rev. A24, 1112 (1981).

    ADS  Google Scholar 

  33. K. Katou, J. Phys. Soc. Japan 51, 996 (1981).

    ADS  Google Scholar 

  34. J. Weiland, Physica Scripta 23, 801 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  35. V.P. Pavlenko and J. Weiland, Phys. Rev. Lett. 46, 246 (1981).

    Article  ADS  Google Scholar 

  36. R. Nakach, V.P. Pavlenko, J. Weiland and H. Wilhelmsson, Phys. Rev. Lett. 46, 447 (1981).

    Article  ADS  Google Scholar 

  37. J. Weiland and J.P. Mondt, Phys. Rev. Lett. 48, 23 (1982).

    Article  ADS  Google Scholar 

  38. G. Rogister and G. Hasselberg, Phys. Rev. Lett. 48, 249 (1982).

    Article  ADS  Google Scholar 

  39. T. Taniuti, and A. Hasegawa, Physica Scripta T2:1, 147 (1982).

    Google Scholar 

  40. N. Bekki, H. Takayasu, T. Taniuti and H. Yoshihara, Physica Scripta T2:2, 89 (1982).

    Google Scholar 

  41. H. Pecseli, Physica Scripta T2:1, 83 (1982).

    Google Scholar 

  42. D.C. Montgomery, Physica Scripta T2:1, 83 (1982).

    Google Scholar 

  43. A. Hasagawa and M. Wakatani, Phys. Rev. Lett. 50, 682 (1983).

    Article  ADS  Google Scholar 

  44. A. Hasagawa and M. Wakatani, Phys. Fluids 26, 2770 (1983).

    Article  ADS  Google Scholar 

  45. R.E. Waltz, Phys. Fluids 26, 169 (1983).

    Article  ADS  MATH  Google Scholar 

  46. J. Weiland and H. Wilhelmsson, Physica Scripta 28, 217 (1983).

    Article  ADS  Google Scholar 

  47. G. Rogister and G. Hasselberg, Phys. Fluids 26, 1467 (1983).

    Article  ADS  MATH  Google Scholar 

  48. H.U. Rahman and J. Weiland, Phys. Rev. A28, 1673 (1983).

    ADS  Google Scholar 

  49. P. Terry and W. Horton, Phys., Fluids 26, 106 (1983).

    Google Scholar 

  50. H.D. Hazeltine, Phys. Fluids 26, 3242 (1983).

    Article  ADS  MATH  Google Scholar 

  51. H.L. Pecseli, T. Mikkelsen and S.E. Larsen, Plasma Physics 25, 1173 (1983).

    Article  ADS  Google Scholar 

  52. H.L. Pecseli, J. Juul Rasmussen, H. Sugai and K. Thomsen, Plasma Phys. Control. Fusion 26, 1021 (1984).

    Article  ADS  Google Scholar 

  53. J. Weiland, Physica Scripta 29, 234 (1984).

    Article  ADS  Google Scholar 

  54. P.K. Shukla, M.Y. Yu, H.U. Rahman and K.H. Spatschek, “Nonlinear convective Motion in Plasmas”, Physics Reports 105, 227–328 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  55. J. Weiland and J.P. Mondt, Phys. Fluids 28, 1735 (1985).

    Article  ADS  MATH  Google Scholar 

  56. P.C. Liewer, Nuclear Fusion 25, 543 (1985).

    Article  Google Scholar 

  57. R.E. Waltz, Phys. Lett. 55, 1098 (1985).

    Article  Google Scholar 

  58. V.I. Petviashvili and O.A. Pokhotelov, JETP Lett. {\bf 42}, 54 (1985).

    Google Scholar 

  59. P.K. Shukla, Phys. Rev. A32, 1858 (1985).

    ADS  Google Scholar 

  60. E.A. Witalis, IEE. Trans. Plasma Sci. 14, 842 (1986).

    Article  ADS  Google Scholar 

  61. L. Turner, IEE. Trans. Plasma Sci. 14, 849 (1986).

    Article  ADS  Google Scholar 

  62. C.T. Hsu, H.D. Hazeltine and J.P. Morrison, Phys. Fluids {\bf 29}, 1480 (1986).

    Google Scholar 

  63. T. Taniuti, J. Phys. Soc. Japan 55, 4253 (1986).

    Article  ADS  Google Scholar 

  64. D. Jovanovic, H.L. Pecseli, J.J. Rasmussen and K. Thomsen, J. Plasma Physics 37, 81 (1987).

    Article  ADS  Google Scholar 

  65. M. Liljeström and J. Weiland, Phys. Fluids 31, 2228 (1988).

    Article  ADS  MATH  Google Scholar 

  66. Katou and J. Weiland, Phys. Fluids 31, 2233 (1988).

    Google Scholar 

  67. H. Nordman and J. Weiland, Phys. Lett. A37, 4044 (1988).

    Google Scholar 

  68. A.M. Martins and J.T. Mendoca, Phys. Fluids 31, 3286 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. P.K. Shukla and J. Weiland, Phys. Lett. A136, 59 (1989).

    ADS  Google Scholar 

  70. P.K. Shukla and J. Weiland, Phys. Rev. A40, 341 (1989).

    ADS  Google Scholar 

  71. H. Nordman and J. Weiland, Nuclear Fusion 29, 251 (1989).

    Article  Google Scholar 

  72. B.G. Hong, W. Horton, Phys. Fluids B2, 978 (1989).

    ADS  Google Scholar 

  73. H. Nordman, J. Weiland and A. Jarmen, Nuclear Fusion 30, 983 (1990).

    Article  Google Scholar 

  74. H. Wilhelmsson, Nucl. Phys. A518, 84 (1990).

    ADS  Google Scholar 

  75. M. Persson and H. Nordman, Phys. Rev. Lett. 67, 3396 (1991).

    Article  ADS  Google Scholar 

  76. J. Weiland and H. Nordman, Nuclear Fusion 31, 390 (1991).

    Article  Google Scholar 

  77. J. Nycander and V.V. Yankov, Phys. Plasmas 2, 2874 (1995).

    Article  ADS  Google Scholar 

  78. H.L. Pecseli and J. Trulsen, J. Plasma Physics 54, 401 (1995).

    Article  ADS  Google Scholar 

  79. N. Mattor and S.E. Parker, Phys. Rev. Lett. 79, 3419 (1997).

    Article  ADS  Google Scholar 

  80. G.N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E56, 5979 (1997).

    ADS  Google Scholar 

  81. A.Zagorodny and J. Weiland, Phys. Plasmas 6, 2359 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  82. I. Holod, A. Zagorodny and J. Weiland, Phys. Rev. E71, 046401–1 (2005).

    ADS  Google Scholar 

  83. A. Zagorodny and J. Weiland, Physics of Plasmas. 16 052308. (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiland, J. (2012). Nonlinear Theory. In: Stability and Transport in Magnetic Confinement Systems. Springer Series on Atomic, Optical, and Plasma Physics, vol 71. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3743-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3743-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3742-0

  • Online ISBN: 978-1-4614-3743-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics