Skip to main content

A Chopper Instrumentation Amplifier with Gain Error Reduction Loop

  • Chapter
  • First Online:
Precision Instrumentation Amplifiers and Read-Out Integrated Circuits

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 3481 Accesses

Abstract

This chapter describes a stand-alone chopper current-feedback instrumentation amplifier (CFIA) that has improved performance compared to the one described in Chap. 4. It maintains the latter’s low noise and low offset, and also obtains high gain accuracy and low gain drift without trimming. This is achieved by applying dynamic element matching (DEM) to the input and feedback transconductors so as to average out their mismatch. To eliminate the resulting DEM ripple, a gain error reduction loop (GERL) is employed to continuously null the Gm mismatch. The concept and analysis of DEM and the GERL is presented in Sects. 5.2 and 5.3. Then the similarities and differences between the offset reduction loop (ORL) and the GERL are discussed, together with their effects on the input and feedback Gm transfer functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu R, Makinwa KAA, Huisjing JH (2009) A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and and AC-coupled ripple reduction loop. IEEE J Solid-State Circuits 44(12):3232–3243

    Google Scholar 

  2. Slattery C, Nie M (2005) A reference design for high-performance, low-cost weigh scales. Available at http://www.analog.com/library/analogDialogue/archives/39-12/weigh_scale.html

  3. Pertijs MAP, Kindt WJ (2010) A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J Solid-State Circuits 45(10):2044–2056

    Article  Google Scholar 

  4. Witte JF, Huijsing JH, Makinwa KAA (2008) A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing. In Proceedings of the IEEE ISSCC, digital technical papers, pp 74–75

    Google Scholar 

  5. Sakunia S, Witte F, Pertijs M, Makinwa KAA (2011) A ping-pong-pang current-feedback instrumentation amplifier with 0.04 % gain error. Paper presented at the IEEE Symposium on VLSI Circuits, pp 60–61

    Google Scholar 

  6. Wu R, Huijsing JH, Makinwa KAA (2011) A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06 % untrimmed gain error. In Proceedings of the IEEE ISSCC, digital technical papers, pp 244–245

    Google Scholar 

  7. Bakker A, Thiele K, Huijsing JH (2000) A CMOS nested-chopper instrumentation amplifier with 100 nV offset. IEEE J Solid-State Circuits 35(12):1877–1883

    Article  Google Scholar 

  8. Degrauwe M, Vittoz E et al (1985) A micropower CMOS-instrumentation amplifier. IEEE J Solid-State Circuits SC-20(3):805–807

    Google Scholar 

  9. Terada J, Nishimura K et al (2008) A 10.3 Gb/s burst-mode CDR using a ∆Σ DAC. IEEE J Solid-State Circuits 43(12):2921–2928

    Article  Google Scholar 

  10. Fan Q, Huijsing JH, Makinwa KAA (2010) A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2 μV offset. In Proceedings of the IEEE ISSCC digital technical papers, pp 80–81

    Google Scholar 

  11. Steyaert MSJ, Sansen WMC, Chang Z (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits SC-22(6):1163–1168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, R., Huijsing, J.H., Makinwa, K.A.A. (2013). A Chopper Instrumentation Amplifier with Gain Error Reduction Loop. In: Precision Instrumentation Amplifiers and Read-Out Integrated Circuits. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3731-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3731-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3730-7

  • Online ISBN: 978-1-4614-3731-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics