Tinnitus pp 137-162 | Cite as

Cortex: Way Station or Locus of the Tinnitus Percept?

  • Jos J. EggermontEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 44)


One extreme position for the cortical participation in the tinnitus percept is that the cortex just responds to the changing neural activity from subcortical areas in a way similar to its processing of auditory information originating in the outside world. The other extreme position is that the cortex not only initiates the tinnitus percept but also changes the activity in subcortical structures via corticofugal pathways. It is more likely that an interaction exists between changes at subcortical levels, including the auditory periphery and the thalamocortical system combined with the limbic system, that function to modulate the subcortical activity. One has to realize that even in the input layers of auditory cortex, at most 10% of this input is the result of afferent activity from the thalamus, whereas the remainder originates from other cortical layers or other cortical areas. Because there are about 13 cortical areas in primates, including humans and cats (Winer & Lee, 2007), ample opportunity exists for the cortex to continually process its own activity.


Hearing Loss Auditory Cortex Vagus Nerve Stimulation Inferior Colliculus Noise Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, S. D., Hughes, L. F., Bauer, C. A., Salvi, R., & Caspary, D. M. (1999). Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience, 93, 1375–1381.PubMedGoogle Scholar
  2. Abeles, M. (1991). Corticonics. Neural circuits of the cerebral cortex. Cambridge, UK: Cambridge University Press.Google Scholar
  3. Attias, J., Urbach, D., Gold, S., & Shemesh, Z. (1993). Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hearing Research, 71, 106–113.PubMedGoogle Scholar
  4. Baguley, D. M., Jones, S., Wilkins, I., Axon, P. R., & Moffat, D. A. (2005). The inhibitory effect of intravenous lidocaine infusion on tinnitus after translabyrinthine removal of vestibular schwannoma: A double-blind, placebo-controlled, crossover study. Otology & Neurotology, 26, 169–176.Google Scholar
  5. Bao, S., Chan, V. T. & Merzenich, N. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412, 79–83.PubMedGoogle Scholar
  6. Bao, S., Chang, E. F., Davis, J.D., Gobeske, K. T. & Merzenich, M. M. (2003). Progressive degradation and subsequent refinement of acoustic representations in the adult auditory cortex. Journal of Neuroscience, 23, 10765–10775.PubMedGoogle Scholar
  7. Bauer, C. A., Turner, J. G., Caspary, D. M., Myers, K. S., & Brozoski, T. J. (2008). Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. Journal of Neuroscience Research, 86, 2564–2578.PubMedGoogle Scholar
  8. Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436,1161–1165.PubMedGoogle Scholar
  9. Bowen, G. P., Lin, D., Taylor, M. K., & Ison, J. R. (2003). Auditory cortex lesions in the rat impair both temporal acuity and noise increment thresholds, revealing a common neural substrate. Cerebral Cortex, 13, 815–822.PubMedGoogle Scholar
  10. Butler, R. A., Diamond, I. T., & Neff, D. W. (1957). Role of auditory cortex in discrimination of changes in frequency. Journal of Neurophysiology, 20, 108–120.PubMedGoogle Scholar
  11. Cariani, P. A., & Delgutte, B. (1996). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. Journal of Neurophysiology, 76(3), 1698–1716.Google Scholar
  12. Cazals, Y., Horner, K. C., & Huang, Z. W. (1998). Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: A plausible index of tinnitus. Journal of Neurophysiology, 80, 2113–2120.PubMedGoogle Scholar
  13. –Chen, G. D., & Jastreboff, P. J. (1995). Salicylate-induced abnormal activity in the inferior colliculus of rats. Hearing Research, 82, 158–178.PubMedGoogle Scholar
  14. Chen, G. D., Kermany, M. H., D’Elia, A., Ralli, M., Tanakam C., Bielefeld, E. C., et al. (2010). Too much of a good thing: Long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hearing Research, 265, 63–69.PubMedGoogle Scholar
  15. –Cheung, S. W., & Larson, P. S. (2010). Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience, 169, 1768–1778.PubMedGoogle Scholar
  16. Dai, H. (2010). Harmonic pitch: Dependence on resolved partials, spectral edges, and combination tones. Hearing Research, 270, 143–150.PubMedGoogle Scholar
  17. De Ridder, D., De Mulder, G., Verstraeten, E., Van der Kelen, K., Sunaert, S., Smits, M., et al. (2006). Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 68, 48–54.PubMedGoogle Scholar
  18. Diesch, E., Andermann, M., Flor, H., & Rupp, A. (2010). Functional and structural aspects of tinnitus-related enhancement and suppression of auditory cortex activity. NeuroImage, 50(4), 1545–1559.PubMedGoogle Scholar
  19. Eggermont, J. J. (2006). A time-line of auditory cortical reorganization after noise-induced hearing loss. In S. G. Lomber & J. J. Eggermont (Eds.), Reprogramming the cerebral cortex: Adaptive plasticity following central and peripheral lesions (pp. 143–158). New York: Oxford University Press.Google Scholar
  20. Eggermont, J. J. (2007). Correlated neural activity as the driving force for functional changes in auditory cortex. Hearing Research, 229, 69–80.PubMedGoogle Scholar
  21. Eggermont, J. J. (2008). Role of auditory cortex in noise and drug-induced tinnitus. American Journal of Audiology 27(2), S162–S167.Google Scholar
  22. Eggermont, J. J., & Kenmochi, M. (1998). Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hearing Research, 117, 149–160.PubMedGoogle Scholar
  23. Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta, S. P., et al. (2011). Reversing pathological neural activity using targeted plasticity. Nature, 470(7332), 101–104.PubMedGoogle Scholar
  24. Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40, 859–869.PubMedGoogle Scholar
  25. Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Science, 6, 78–84.Google Scholar
  26. Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.PubMedGoogle Scholar
  27. Giraud, A. L., Chery-Croze, S., Fischer, G., Fischer, C., Vighetto, A., Gregoire, M. C., et al. (1999). A selective imaging of tinnitus. NeuroReport, 10, 1–5.PubMedGoogle Scholar
  28. Goldberg, J. M., & Neff, W. D. (1961). Frequency discrimination after bilateral ablation of cortical auditory areas. Journal of Neurophysiology, 24, 119–128.PubMedGoogle Scholar
  29. Hart, H. C., Palmer, A. R., & Hall, D. A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773–781.PubMedGoogle Scholar
  30. He, J. (1997). Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. Journal of Neurophysiology, 77(2), 896–908.PubMedGoogle Scholar
  31. He, J., Yu, Y. Q., Xiong, Y., Hashikawam, T., & Chan, Y. S. (2002). Modulatory effect of cortical activation on the lemniscal auditory thalamus of the guinea pig. Journal of Neurophysiology, 88(2), 1040–1050.PubMedGoogle Scholar
  32. Heffner, H. (1978). Effect of auditory cortex ablation on localization and discrimination of brief sounds. Journal of Neurophysiology, 41, 963–976.PubMedGoogle Scholar
  33. Henry, J. A., Dennis, K. C., & Schechter, M. A. (2005). General review of tinnitus: Prevalence, mechanisms, effects, and management. Journal of Speech, Language, and Hearing Research, 48, 1204–1235.PubMedGoogle Scholar
  34. Hoke, M., Feldmann, H., Pantev, C., Lütkenhöner, B., & Lehnertz, K. (1989). Objective evidence of tinnitus in auditory evoked magnetic fields. Hearing Research, 37, 281–286.PubMedGoogle Scholar
  35. Humphries, C., Liebenthal, E., & Binder, J.R. (2010). Tonotopic organization of human auditory cortex. NeuroImage, 50, 1202–1211.PubMedGoogle Scholar
  36. Hunter, K. P., & Willott, J. F. (1993). Effects of bilateral lesions of auditory cortex in mice on the acoustic startle response. Physiology and Behaviour, 54, 1133–1139.Google Scholar
  37. Irvine, D. R., Rajan, R., & Smith, S. (2003). Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. Journal of Comparative Neurology, 467, 354–374.PubMedGoogle Scholar
  38. Jacobson, G. P., & McCaslin, D. L. (2003). A reexamination of the long latency N1 response in patients with tinnitus. Journal of the American Academy of Audiology, 14, 393–400.PubMedGoogle Scholar
  39. Jastreboff, P. J. (1990). Phantom auditory perception (tinnitus): Mechanisms of generation and perception. Neuroscience Research, 8, 221–254.PubMedGoogle Scholar
  40. Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84, 541–577.PubMedGoogle Scholar
  41. Kamke, M. R., Brown, M., & Irvine, D. R. (2003). Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. Journal of Comparative Neurology, 459, 355–367.PubMedGoogle Scholar
  42. Kenmochi, M., & Eggermont, J. J. (1997). Salicylate and quinine affect the central nervous system. Hearing Research, 113, 110–116.PubMedGoogle Scholar
  43. Khosla, D., Ponton, C. W., Eggermont, J. J., Kwong, B., Don, M., & Vasama, J. P. (2003). Differential ear effects of profound unilateral deafness on the adult human central auditory system. Journal of the Association for Research in Otolaryngology, 4, 235–249.PubMedGoogle Scholar
  44. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.PubMedGoogle Scholar
  45. Kimura, M., & Eggermont, J. J. (1999). Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hearing Research, 135, 146–162.PubMedGoogle Scholar
  46. Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59, 107–128.PubMedGoogle Scholar
  47. Komiya, H., & Eggermont, J. J. (2000). Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Oto-Laryngologica, 120, 750–756.PubMedGoogle Scholar
  48. Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C. & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 3908–3918.PubMedGoogle Scholar
  49. Langers, D. R., van Dijk, P., Schoenmaker, E. S., & Backes, W. H. (2007). fMRI activation in relation to sound intensity and loudness. NeuroImage, 35(2), 709–718.PubMedGoogle Scholar
  50. Langner, G., & Schreiner, C. E. (1988). Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology, 60, 1799–1822.Google Scholar
  51. Langner, G., Sams, M., Heil, P., & Schulze, H. (1997). Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: Evidence from magnetoencephalography. Journal of comparative Physiology A, 181, 665–676.Google Scholar
  52. Langner, G., Dinse, H. R., & Godde, B. (2009). A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Frontiers in Integrative Neuroscience, 3, Article 27, 1–11.Google Scholar
  53. –9–Levine, R. A. (1999). Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. American Journal of Otolaryngology, 20, 351–362.PubMedGoogle Scholar
  54. Lockwood, A. H., Wack, D. S., Burkard, R. F., Coad, M. L., Reyes, S. A., Arnold, S. A., & Salvi, R. J. (2001). The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology, 56, 472–480.PubMedGoogle Scholar
  55. Lomber, S. G., & Malhotra, S. (2008). Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 11, 609–616.PubMedGoogle Scholar
  56. Luo, F., Wang, Q., Kashani, A., & Yan, J. (2008). Corticofugal modulation of initial sound processing in the brain. Journal of Neuroscience, 28(45), 11615–11621.PubMedGoogle Scholar
  57. Lütkenhöner, B., Krumbholz, K., Lammertmann, C., Seither- Preisler, A., Steinstrater, O., & Patterson, R. D. (2003a). Localization of primary auditory cortex in humans by magnetoencephalography. NeuroImage, 18, 58–66.PubMedGoogle Scholar
  58. Lütkenhöner, B., Krumbholz, K., & Seither-Preisler, A. (2003b). Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. NeuroImage, 19, 935–949.PubMedGoogle Scholar
  59. Ma, X., & Suga, N. (2001). Plasticity of bat’s central auditory system evoked by focal electric stimulation of auditory and/or somatosensory cortices. Journal of Neurophysiology, 85(3), 1078–1087.PubMedGoogle Scholar
  60. Manabe, Y., Yoshida, S., Saito, H., & Oka, H. (1997). Effects of lidocaine on saliylate-induced discharge of neurons in the inferior colliculus of the guinea pig. Hearing Research, 103, 192–198.PubMedGoogle Scholar
  61. Mazurek, B., Olze, H., Haupt, H., & Szczepek, A. J. (2010). The more the worse: the grade of noise-induced hearing loss associates with the severity of tinnitus. International Journal of Environmental Research and Public Health, 7(8), 3071–3079.PubMedGoogle Scholar
  62. Meyer, D. R., & Woolsey, C. N. (1952). Effects of localized cortical destruction on auditory discriminative conditioning in cat. Journal of Neurophysiology, 15, 149–162.PubMedGoogle Scholar
  63. Milbrandt, J. C., Holder, T. M.,Wilson, M. C., Salvi, R. J., & Caspary, D. M. (2000). GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hearing Research, 147, 251–260.PubMedGoogle Scholar
  64. Morita, T., Naito, Y., Nagamine, T., Fujiki, N., Shibasaki, H., & Ito, J. (2003).Google Scholar
  65. Enhanced activation of the auditory cortex in patients with inner-ear hearing impairment: A magnetoencephalographic study. Clinical Neurophysiology, 114, 851–859.Google Scholar
  66. Muhlnickel, W., Elbert, T., Taub, E., & Flor, H. (1998). Reorganization of auditory cortex in tinnitus. Proceedings of the National Academy of Sciences of the USA, 95, 10340–10343.PubMedGoogle Scholar
  67. Mulheran, M. (1999). The effects of quinine on cochlear nerve fibre activity in the guinea pig. Hearing Research, 134, 145–152.PubMedGoogle Scholar
  68. Noreña, A. J. (2011). An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neuroscience and Biobehavioral Reviews 35, 1089–1109.Google Scholar
  69. Noreña, A. J., & Eggermont, J. J. (2003). Changes in spontaneous neural activity immediately after an acoustic trauma: Implications for neural correlates of tinnitus. Hearing Research, 183, 137–153.PubMedGoogle Scholar
  70. Noreña, A. J., & Eggermont, J. J. (2005). Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. Journal of Neuroscience, 25, 699–705.PubMedGoogle Scholar
  71. Noreña, A. J., & Eggermont, J. J. (2006). Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. NeuroReport, 17, 559–563.PubMedGoogle Scholar
  72. Noreña, A., Micheyl, C., Chery-Croze, S., & Collet, L. (2002). Psychoacoustic characterization of the tinnitus spectrum: Implications for the underlying mechanisms of tinnitus. Audiology and Neurotology, 7, 358–369.PubMedGoogle Scholar
  73. Noreña, A. J., Tomita, M., & Eggermont, J. J. (2003). Neural changes in cat auditory cortex after a transient pure-tone trauma. Journal of Neurophysiology, 90, 2387–2401.PubMedGoogle Scholar
  74. Noreña, A. J., Moffat, G., Blanc, J. L., Pezard, L., & Cazals, Y. (2010). Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: Salicylate and acoustic trauma. Neuroscience, 166, 1194–1209.PubMedGoogle Scholar
  75. –Ochi, K., & Eggermont, J. J. (1996). Effects of salicylate on neural activity in cat primary auditory cortex. Hearing Research, 95, 63–76.PubMedGoogle Scholar
  76. Ochi, K., & Eggermont, J. J. (1997). Effects of quinine on neural activity in cat primary auditory cortex. Hearing Research, 97, 105–118.Google Scholar
  77. Ohl, F. W., Wetzel, W., Wagner, T., Rech, A., & Scheich, H. (1999). Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination, of frequency modulated tones but not of pure tones. Learning and Memory, 6, 347–362.PubMedGoogle Scholar
  78. Pantev, C., Hoke, M., Lütkenhöner, B., & Lehnertz, K. (1989). Tonotopic organization of the auditory cortex: Pitch versus frequency representation. Science, 246(4929), 486–488.PubMedGoogle Scholar
  79. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767–776.PubMedGoogle Scholar
  80. Paul, A. K., Lobarinas, E., Simmons, R., Wack, D., Luisi, J. C., Spernyak, J., et al. (2009). Metabolic imaging of rat brain during pharmacologically-induced tinnitus. NeuroImage, 44(2), 312–318.PubMedGoogle Scholar
  81. Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience, 24(30), 6810–6815.PubMedGoogle Scholar
  82. Penner, M. J. (1980). Two-tone forward masking patterns and tinnitus. Journal of Speech and Hearing Research, 23, 779–786.PubMedGoogle Scholar
  83. Pienkowski, M., & Eggermont, J. J. (2009). Recovery from reorganization induced in adult cat primary auditory cortex by a band-limited spectrally enhanced acoustic environment. Hearing Research, 257, 24–40.PubMedGoogle Scholar
  84. Plewnia, C., Bartels, M., & Gerloff, C. (2003). Transient suppression of tinnitus by transcranial magnetic stimulation. Annals of Neurology, 53, 263–266.PubMedGoogle Scholar
  85. Plewnia, C., Reimold, M., Najib, A., Brehm, B., Reischl, G., Plontke, S. K., & Gerloff, C. (2007). Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Human Brain Mapping, 28, 238–246.PubMedGoogle Scholar
  86. Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26, 4970–4982.PubMedGoogle Scholar
  87. Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.PubMedGoogle Scholar
  88. Quaranta, N., Wagstaff, S., & Baguley, D. M. (2004). Tinnitus and cochlear implantation. International Journal of Audiology, 43, 245–251.PubMedGoogle Scholar
  89. Rajan, R., & Irvine, D. R. (1998). Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. Journal of Comparative Neurology, 399, 35–46.PubMedGoogle Scholar
  90. Rajan, R., Irvine, D. R. F., Wise, L. Z., & Heil, P. (1993). Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology, 338, 17–49.PubMedGoogle Scholar
  91. Rauschecker, J. P., Leaver, A. M, & Mühlau, M. (2010). Tuning out the noise: Limbic-auditory interactions in tinnitus. Neuron, 66(6), 819–826.PubMedGoogle Scholar
  92. Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  93. Ruel, J., Chabbert, C., Nouvian, R., Bendris, R., Eybalin, M., Leger, C. L., et al. (2008). Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. Journal of Neuroscience, 28, 7313–7323.PubMedGoogle Scholar
  94. Savastano, M. (2008). Tinnitus with or without hearing loss: Are its characteristics different? European Archive of Otorhinolaryngology, 265(11), 1295–1300.Google Scholar
  95. Schlee, W., Hartmann, T., Langguth, B., & Weisz, N. (2009). Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neuroscience, 10, 11.PubMedGoogle Scholar
  96. Scholl, B., & Wehr, M. (2008). Disruption of balanced cortical excitation and inhibition by acoustic trauma. Journal of Neurophysiology, 100, 646–656.PubMedGoogle Scholar
  97. Schreiner, C. E., & Langner, G. (1988). Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. Journal of Neurophysiology, 60, 1823–1840.Google Scholar
  98. Seki, S., & Eggermont, J. J. (2003). Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hearing Research, 180, 28–38.PubMedGoogle Scholar
  99. Stypulkowski, P. H. (1990). Mechanisms of salicylate ototoxicity. Hearing Research, 46, 113–146.PubMedGoogle Scholar
  100. Suga, N., Gao, E., Zhang, Y., Ma, X., & Olsen, J. F. (2000). The corticofugal system for hearing: Recent progress. Proceedings of the National Academy of Sciences of the USA, 97, 11807–11814.PubMedGoogle Scholar
  101. Sun, W., Lu, J., Stolzberg, D., Gray, L., Deng, A., Lobarinas, E., & Salvi, R. J. (2009). Salicylate increases the gain of the central auditory system. Neuroscience, 159(1), 325–334.PubMedGoogle Scholar
  102. Talavage, T. M., Sereno, M. I., Melcher, J. R., Ledden, P. J., Rosen, B. R., & Dale, A. M. (2004). Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Journal of Neurophysiology, 91(3), 1282–1296.PubMedGoogle Scholar
  103. Talwar, S. K., Musial, P. G., & Gerstein, G. L. (2001). Role of mammalian auditory cortex in the perception of elementary sound properties. Journal of Neurophysiology, 85, 2350–2358.PubMedGoogle Scholar
  104. Tan, A. Y., Zhang, L. I., Merzenich, M. M., & Schreiner, C. E. (2004). Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology, 92, 630–643.PubMedGoogle Scholar
  105. Tan, A. Y., Atencio, C. A., Polley, D. B., Merzenich, M. M., & Schreiner, C. E. (2007). Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience, 146, 449–462.PubMedGoogle Scholar
  106. van der Loo, E., Gais, S., Congedo, M., Vanneste, S., Plazier, M., Menovsky, T., et al. (2009). Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One, 4(10), e7396.PubMedGoogle Scholar
  107. Van Horn, S. C., Erisir, A., & Sherman, S. M. (2000). Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 416, 509–520.PubMedGoogle Scholar
  108. Vanneste, S., Plazier, M., der Loo, E., van de Heyning, P., Congedo, M., & De Ridder, D. (2010). The neural correlates of tinnitus-related distress. NeuroImage, 52(2), 470–480.PubMedGoogle Scholar
  109. Walhäusser-Franke, E., Mahlke, C., Oliva, R., Braun, S., Wenz, G., & Langner, G. (2003). Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Experimental Brain Research, 153, 649–654.Google Scholar
  110. Wallace, M. N., Rutkowski, R. G., Shackleton, T. M., & Palmer, A. R. (2000). Phase-locked responses to pure tones in guinea pig auditory cortex. NeuroReport, 11(18), 3989–3993.PubMedGoogle Scholar
  111. Wallace, M. N., Coomber, B., Sumner, C. J., Grimsley, J. M., Shackleton, T. M., & Palmer, A. R. (2011). Location of cells giving phase-locked responses to pure tones in the primary auditory cortex. Hearing Research, 274, 142–151.PubMedGoogle Scholar
  112. Wang, Z., Ruan, Q., & Wang, D. (2005). Different effects of intracochlear sensory and neuronal injury stimulation on expression of synaptic N-methyl-d-aspartate receptors in the auditory cortex of rats in vivo. Acta Oto-Laryngologica, 125, 1145–1151.PubMedGoogle Scholar
  113. Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.PubMedGoogle Scholar
  114. Weisz, N., Moratti, S., Meinzer, M., Dohrmann, K., & Elbert, T. (2005a). Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Medicine, 2, e153.PubMedGoogle Scholar
  115. Weisz, N.,Wienbruch, C., Dohrmann, K., & Elbert, T. (2005b). Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain, 28, 2722–2731.Google Scholar
  116. Weisz, N., Muller, S., Schlee, W., Dohrmann, K., Hartmann, T., & Elbert, T. (2007). The neural code of auditory phantom perception. Journal of Neuroscience, 27, 1479–1484.PubMedGoogle Scholar
  117. Wienbruch, C., Paul, I., Weisz, N., Elbert, T., & Roberts, L. E. (2006). Frequency organization of the 40-Hz auditory steadystate response in normal hearing and in tinnitus. NeuroImage, 33, 180–194.PubMedGoogle Scholar
  118. Winer, J. A., & Lee, C. C. (2007). The distributed auditory cortex. Hearing Research, 229(1–2), 3–13.PubMedGoogle Scholar
  119. Wu, G. K., Li, P., Tao, H. W., & Zhang, L. I. (2006). Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning Neuron, 52, 705–715.Google Scholar
  120. Xiao, Z., & Suga, N. (2002). Modulation of cochlear hair cells by the auditory cortex in the ­mustached bat. Nature Neuroscience, 5(1), 57–63.PubMedGoogle Scholar
  121. Yan, J., & Ehret, G. (2001). Corticofugal reorganization of the midbrain tonotopic map in mice. NeuroReport, 12(15), 3313–3316.PubMedGoogle Scholar
  122. Yan, J., & Ehret, G. (2002). Corticofugal modulation of midbrain sound processing in the house mouse. European Journal of Neuroscience, 16(1), 119–128.PubMedGoogle Scholar
  123. Yan, W., & Suga, N. (1998). Corticofugal modulation of the midbrain frequency map in the bat auditory system. Nature Neuroscience, 1, 54–58.PubMedGoogle Scholar
  124. Yan, J., Zhang, Y., & Ehret, G. (2005). Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. Journal of Neurophysiology, 93(1), 71–83.PubMedGoogle Scholar
  125. Yang, G., Lobarinas, E., Zhang, L., Turner, J., Stolzberg, D., Salvi, R., & Sun, W. (2007). Salicylate induced tinnitus: Behavioral measures and neural activity in auditory cortex of awake rats. Hearing Research, 226, 244–253.PubMedGoogle Scholar
  126. Zhang, L. I., Tan, A. Y. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424, 201–205.PubMedGoogle Scholar
  127. Zhang, X., Yang, P., Cao, Y., Qin, L., & Sato, Y. (2011). Salicylate induced neural changes in the primary auditory cortex of awake cats. Neuroscience, 172, 232–245.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Physiology and Pharmacology and Department of PsychologyUniversity of CalgaryCalgaryCanada

Personalised recommendations