Skip to main content

Behavioral Tests for Tinnitus in Animals

  • Chapter
  • First Online:
Tinnitus

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 44))

Abstract

Tinnitus refers to the perception of sound in the absence of external sound. Although this can include the perception of internal sounds, it is most often used to designate the perception of sound in the complete absence of acoustic stimulation, which is the way it is used here (e.g., McFadden, 1982; Penner & Jastreboff, 1996). Of the various causes of tinnitus, the best known are exposure to loud sound and the ingestion of large doses of ototoxic drugs, such as salicylate, which is the active ingredient of aspirin, or quinine, which is a former treatment for malaria and a current flavor component of tonic water. Interest in tinnitus has increased in recent years, aimed primarily at finding a treatment, but understanding this disorder may also give some insight into the neurological basis of the perception of sound. Because carefully controlled studies of neurological disorders are best conducted with animals, this has created a need for a way to determine if an animal has tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi H (2007) Bonferroni and Å idák corrections for multiple comparisons. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. SAGE, Thousand Oaks, CA, pp 103–107

    Google Scholar 

  • Atherley GRC, Hempstock TI, Noble WG (1968) Study of tinnitus induced temporarily by noise. Journal of the Acoustical Society of America 44:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Bauer CA, Brozoski TJ (2001) Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. Journal of the Association for Research in Otolaryngology 2:54–64

    PubMed  CAS  Google Scholar 

  • Bauer CA, Brozoski TJ, Rojas R, Boley J, Wyder M (1999) Behavioral model of chronic tinnitus in rats. Otolaryngology-Head and Neck Surgery 121:457–462

    Article  PubMed  CAS  Google Scholar 

  • Brennan JF, Brown CA, Jastreboff PJ (1996) Salicylate-induced changes in auditory thresholds of adolescent and adult rats. Developmental Psychobiology 29:69–86

    Article  PubMed  CAS  Google Scholar 

  • Brennan JF, Jastreboff PJ (1991) Generalization of conditioned suppression during salicylate-inducted phantom auditory perception in rats. Acta Neurobiologiae Experimentalis 51:15–27

    PubMed  CAS  Google Scholar 

  • Brozoski TJ, Bauer CA (2005) The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hearing Research 206:227–236

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA (2008) Learning about tinnitus from an animal model. Seminars in Hearing 29:242–258

    Article  Google Scholar 

  • Brozoski TJ, Ciobanu L, Bauer CA (2007a) Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hearing Research 228:168–179

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Spires JD, Bauer CA (2007b) Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. Journal of the Association for Research in Otolaryngology 8:105–118

    Article  PubMed  Google Scholar 

  • Cazals Y (2000) Auditory sensori-neural alterations induced by salicylate. Progress in Neurobiology 62:583–631

    Article  PubMed  CAS  Google Scholar 

  • Davis H, Morgan CT, Hawkins JE Jr, Galambos R, Smith FW (1950) Temporary deafness following exposure to loud tones and noise. Acta Oto-Laryngologica Supplement 88:1–57

    CAS  Google Scholar 

  • Davis RI, Ferraro JA (1984) Comparison between AER and behavioral thresholds in normally and abnormally hearing chinchillas. Ear and Hearing 5:153–159

    Article  PubMed  CAS  Google Scholar 

  • Day RO, Graham GG, Bieri D, Brown M, Cairns D, Harris G et al (1989) Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. British Journal of Clinical Pharmacology 28:695–702

    Article  PubMed  CAS  Google Scholar 

  • Deng A, Lu J, Sun W (2010) Temporal processing in inferior colliculus and auditory cortex affected by high doses of salicylate. Brain Research 1344:996–103

    Google Scholar 

  • Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470:101–104

    Article  PubMed  Google Scholar 

  • Fowler EP (1941) Tinnitus aurium in the light of recent research. Annals of Otology Rhinology and Laryngology 50:139–158

    Google Scholar 

  • Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. Journal of Genetic Psychology 42:206–208

    Google Scholar 

  • Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel J-L (2003) Salicylate induces tinnitus through activation of cochlear NMDA receptors. The Journal of Neuroscience 23:3944–3952

    PubMed  CAS  Google Scholar 

  • Guitton MJ, Dudai Y (2007) Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plasticity 2007. Article ID 80904:1–11

    Google Scholar 

  • Hébert S, Fournier P, Gosselin E (2010) Tinnitus: from rats to humans—validation of the acoustic gap startle paradigm. ARO Abstracts 33:296–297

    Google Scholar 

  • Heffner HE (2011) Two-choice sound-localization procedure for detecting lateralized tinnitus in animals. Behavior Research Methods. doi:10.3758/s13428-0110061-4

  • Heffner HE, Harrington IA (2002) Tinnitus in hamsters following exposure to loud sound. Hearing Research 170:83–95

    Article  PubMed  Google Scholar 

  • Heffner HE, Koay G (2005) Tinnitus and hearing loss in hamsters exposed to loud sound. Behavioral Neuroscience 119:734–742

    Article  PubMed  Google Scholar 

  • Heffner HE, Koay G, Heffner RS (2008) Comparison of behavioral and auditory brainstem response measures of threshold shift in rats exposed to loud sound. Journal of the Acoustical Society of America 124:1093–1104

    Article  PubMed  Google Scholar 

  • Henderson D, Hamernik RP, Salvi RJ, Ahroon W (1983) Comparison of auditory-evoked potentials and behavioral thresholds in the normal and noise-exposed chinchilla. Audiology 22:172–180

    Article  PubMed  CAS  Google Scholar 

  • Holt AG, Bissig D, Mirza N, Rajah G, Berkowitz B (2010) Evidence of key tinnitus-related brain regions documented by a unique combination of manganese-enhanced MRI and acoustic startle reflex testing. PloS One 5, e14260:1–14

    Google Scholar 

  • Ison JR, Allen PD, O’Neill WE (2007) Age-related hearing loss in C57BL/6 J mice has both frequency-specific and non-frequency-specific components that produce a hyperacusis-like exaggeration of the acoustic startle reflex. Journal of the Association for Research in Otolaryngology 8:539–550

    Article  PubMed  Google Scholar 

  • Jastreboff PJ (1990) Phantom auditory perception (tinnitus): Mechanisms of generation and perception. Neuroscience Research 8:221–254

    Article  PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Brennan JF (1994) Evaluating the loudness of phantom auditory perception (tinnitus) in rats. Audiology 33:202–217

    Article  PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT (1988) Phantom auditory sensation in rats: An animal model for tinnitus. Behavioral Neuroscience 102:811–822

    Article  PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Sasaki CT (1994) An animal model of tinnitus: A decade of development. The American Journal of Otology 15:19–27

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Godfrey DA (2008) Dorsal cochlear nucleus hyperactivity and tinnitus: Are they related? American Journal of Audiology 17:S148–S161

    Article  PubMed  Google Scholar 

  • Kaltenbach JA, McCaslin DL (1996) Increases in spontaneous activity in the dorsal cochlear nucleus following exposure to high intensity sound: A possible neural correlate of tinnitus. Auditory Neuroscience 3:57–78

    Google Scholar 

  • Klump GM, Dooling RJ, Fay RR, Stebbins WC (1995) Methods in comparative psychoacoustics. Birkhäuser, Basel

    Google Scholar 

  • Lobarinas E, Sun W, Cushing R, Salvi R (2004) A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hearing Research 190:109–114

    Article  PubMed  Google Scholar 

  • Lobarinas E, Yang G, Ding D, Mirza N, Dalby-Brown W, Hilczmayer E et al (2006) Salicylate- and quinine-induced tinnitus and effects of memantine. Acta Oto-Laryngologica 126:13–19

    Article  Google Scholar 

  • Loeb M, Smith RP (1967) Relation of induced tinnitus to physical characteristics of the inducing stimuli. Journal of the Acoustical Society of America 42:453–455

    Article  PubMed  CAS  Google Scholar 

  • McCabe PA, Dey FL (1965) The effect of aspirin upon auditory sensitivity. Annals of Otology, Rhinology and Laryngology 74:312–325

    CAS  Google Scholar 

  • McFadden D (1982) Tinnitus: Facts, theories, and treatments. National Academies Press, Washington, DC

    Google Scholar 

  • McFadden D, Plattsmier HS, Pasanen EG (1984) Aspirin-induced hearing loss as a model of sensorineural hearing loss. Hearing Research 16:251–260

    Article  PubMed  CAS  Google Scholar 

  • Miller LK (2006) Principles of everyday behavior analysis. Thomson Wadsworth, Belmont, CA

    Google Scholar 

  • Mongan E, Kelly P, Nies K, Porter WW, Pulus HE (1973) Tinnitus as an indication of therapeutic serum salicylate levels. JAMA 226:142–145

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Vinay, Sandhya (2010) The relationship between tinnitus pitch and the edge frequency of the audiogram in individuals with hearing impairment and tonal tinnitus. Hearing Research 261:51–56

    Google Scholar 

  • Myers EN, Bernstein JM (1965) Salicylate ototoxicity. Archives of Otolaryngology 82:483–493

    Article  PubMed  CAS  Google Scholar 

  • Penner MJ (2000) Spontaneous otoacoustic emissions and tinnitus. In: Tyler R (ed) Tinnitus handbook. Singular, San Diego, pp 203–220

    Google Scholar 

  • Penner MJ, Jastreboff PJ (1996) Tinnitus: Psychophysical observations in humans and an animal model. In: Van De Water TR, Popper AN, Fay RR (eds) Clinical aspects of hearing. Springer, New York, pp 258–304

    Google Scholar 

  • Ralli M, Lobarinas E, Fetoni AR, Stolzberg D, Paludetti G, Salvi R (2010) Comparison of salicylate- and quinine-induced tinnitus in rats. Development, time course, and evaluation of audiologic correlates. Otology and Neurotology 31:823–831

    Google Scholar 

  • Rüttiger L, Ciuffani J, Zenner H-P, Knipper M (2003) A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: A new approach for an animal model on tinnitus. Hearing Research 180:39–50

    Article  PubMed  Google Scholar 

  • Rybalko N, Syka J (2005) Effect of noise exposure on gap detection in rats. Hearing Research 200:63–72

    Article  PubMed  CAS  Google Scholar 

  • Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Annals of Otology, Rhinology, and Laryngology 102:1–16

    PubMed  CAS  Google Scholar 

  • Shore SE, Koehler S, Oldakowski M, Hughes LF, Syed S (2008) Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. European Journal of Neuroscience 27:155–168

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, et al (2007) Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 145:715–728

    Google Scholar 

  • Theilgaard E (1951) Investigations in auditory fatigue in individuals with normal hearing and in noise workers (weavers). Acta Otolaryngologica 35:525–537

    Article  Google Scholar 

  • Thompson PO, Gales RS (1961) Temporary threshold shifts in tones and noise bands of equivalent rms sound-pressure level. Journal of the Acoustical Society of America 33:1593–1597

    Article  Google Scholar 

  • Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: A potential novel screening tool. Behavioral Neuroscience 120:188–195

    Article  PubMed  Google Scholar 

  • Turner JG, Parrish J (2008) Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. American Journal of Audiology 17:S185–S192

    Article  PubMed  Google Scholar 

  • Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759

    Article  PubMed  CAS  Google Scholar 

  • Wegel RL (1931) A study of tinnitus. Archives of Otolaryngology 14:158–165

    Article  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK, McCoy MJ (1996) Otoacoustic emissions: Animal models and clinical observations. In: Van De Water TR, Popper AN, Fay RR (eds) Clinical aspects of hearing. Springer, New York, pp 199–257

    Google Scholar 

  • Yang G, Lobarinas E, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: Behavioral measures and neural activity in auditory cortex of awake rats. Hearing Research 226:244–253

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Heffner HE, Koay G, Kaltenbach JA (2004) Hyperactivity in the hamster dorsal cochlear nucleus: Its relationship to tinnitus. Abstracts of the twenty seventh meeting of the Association for Research in Otolaryngology 27:302

    Google Scholar 

  • Zheng Y, Stiles L, Hamilton E, Smith PF, Darlington CL (2010) The effects of the synthetic cannabinoid receptor agonists, WIN55,212–2 and CP55,940, on salicylate-inducted tinnitus in rats. Hearing Research 268:145–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry E. Heffner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heffner, H.E., Heffner, R.S. (2012). Behavioral Tests for Tinnitus in Animals. In: Eggermont, J., Zeng, FG., Popper, A., Fay, R. (eds) Tinnitus. Springer Handbook of Auditory Research, vol 44. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3728-4_2

Download citation

Publish with us

Policies and ethics