Skip to main content

Mitochondrial Disorders Associated with the Mitochondrial DNA Polymerase g: A Focus on Intersubunit Interactions

  • Chapter
  • First Online:
Book cover Mitochondrial Disorders Caused by Nuclear Genes

Abstract

The mitochondrion contains only one DNA polymerase, DNA polymerase gamma (pol γ), to repair and replicate the mitochondrial genome. Human pol γ is a heterotrimer consisting of a 140 kDa catalytic subunit, p140, and a ~ 110 kDa homodimeric accessory subunit, p552. The catalytic p140 subunit harbors DNA polymerase, 5′-deoxyribose phosphate lyase, and 3′-5′ exonuclease activities while the accessory subunit confers processivity to the holoenzyme. The nuclear POLG gene encodes p140 while the nuclear POLG2 gene encodes p552. Mitochondrial diseases associated with mutations in these genes, POLG- and POLG2-related disorders, are composed of early-childhood-onset diseases and late-adulthood-onset diseases. For over a decade, POLG-related diseases have been intensively studied and include Alpers–Huttenlocher syndrome (AHS), Childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), autosomal recessive progressive external ophthalmoplegia (arPEO), and autosomal-dominant progressive external ophthalmoplegia (adPEO). In this chapter, we review recently identified POLG2 mutations associated with mitochondrial disease as well as key POLG mutations that encode variants that disrupt the interface between p140 and p552. In the absence of POLG2 family genetics, we discuss enzymatic deficiencies of protein variants, amino acid residue conservation, clinical evidence as well as other indicators of mutation pathogenicity. Recent biochemical studies suggests that p552 contributes to balancing p140 DNA polymerase and exonuclease activities and disruption of this balance may contribute to mitochondrial DNA (mtDNA) depletion in vivo. Classifying mutations as either pathogenic or neutral is further challenged by syntenic and compound heterozygous mutations and emphasizes the importance of understanding family genetics and biochemically characterizing p140 and p552 variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539

    Article  PubMed  CAS  Google Scholar 

  2. Brown TA, Tkachuk AN, Shtengel G et al (2011) Super-resolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 31(24):4994–5010

    Article  PubMed  CAS  Google Scholar 

  3. Hance N, Ekstrand MI, Trifunovic A (2005) Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum Mol Genet 14:1775–1783

    Article  PubMed  CAS  Google Scholar 

  4. Spelbrink JN, Toivonen JM, Hakkaart GA et al (2000) In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 275:24818–24828

    Article  PubMed  CAS  Google Scholar 

  5. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, Van Der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583–1596

    Article  PubMed  CAS  Google Scholar 

  6. Di Re M, Sembongi H, He J et al (2009) The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res 37:5701–5713

    Article  PubMed  Google Scholar 

  7. Carrodeguas JA, Kobayashi R, Lim SE, Copeland WC, Bogenhagen DF (1999) The accessory subunit of xenopus laevis mitochondrial DNA polymerase gamma Increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II aminoacyl-tRNA synthetases. Mol Cell Biol 19:4039–4046

    PubMed  CAS  Google Scholar 

  8. Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274:38197–38203

    Article  PubMed  CAS  Google Scholar 

  9. Cohen BH, Naviaux RK (2010) The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders. Methods 51:364–373

    Article  PubMed  CAS  Google Scholar 

  10. Haas RH, Parikh S, Falk MJ et al (2007) Mitochondrial disease: A practical approach for primary care physicians. Pediatrics 120:1326–1333

    Article  PubMed  Google Scholar 

  11. Cohen BH, Chinnery PF, Copeland WC (2010) POLG-related disorders. Genereviews at genetests: Medical genetics information resource [database online]. Copyright, University of Washington, Seattle, 1997–2010. http://www.genetests.org. Accessed 16 Mar 2010

  12. Tang S, Wang J, Lee NC et al (2011) Mitochondrial DNA polymerase {gamma} mutations: an ever expanding molecular and clinical spectrum. J Med Genet 48:669–681

    Article  PubMed  CAS  Google Scholar 

  13. Young MJ, Longley MJ, Li FY, Kasiviswanathan R, Wong LJ, Copeland WC (2011) Biochemical analysis of human POLG2 variants associated with mitochondrial disease. Hum Mol Genet 20:3052–3066

    Article  PubMed  CAS  Google Scholar 

  14. Van Goethem G, Dermaut B, Lofgren A, Martin JJ, Van Broeckhoven C (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28:211–212

    Article  PubMed  Google Scholar 

  15. Longley MJ, Humble MM, Sharief FS, Copeland WC (2010) Disease variants of the human mitochondrial DNA helicase encoded by C10orf2 differentially alter protein stability, nucleotide hydrolysis and helicase activity. J Biol Chem 285:29690–29702

    Article  PubMed  CAS  Google Scholar 

  16. Copeland WC (2008) Inherited mitochondrial diseases of DNA replication. Annu Rev Med 59:131–146

    Article  PubMed  CAS  Google Scholar 

  17. Farge G, Pham XH, Holmlund T, Khorostov I, Falkenberg M (2007) The accessory subunit B of DNA polymerase {gamma} is required for mitochondrial replisome function. Nucleic Acids Res 35:902–911

    Article  PubMed  CAS  Google Scholar 

  18. Li FY, Tariq M, Croxen R et al (1999) Mapping of autosomal dominant progressive external ophthalmoplegia to a 7-cM critical region on 10q24. Neurology 53:1265–1271

    Article  PubMed  CAS  Google Scholar 

  19. Spelbrink JN, Li FY, Tiranti V et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231

    Article  PubMed  CAS  Google Scholar 

  20. Suomalainen A, Kaukonen J, Amati P et al (1995) An autosomal locus predisposing to deletions of mitochondrial DNA. Nat Genet 9:146–151

    Article  PubMed  CAS  Google Scholar 

  21. Stumpf JD, Copeland WC (2011) Mitochondrial DNA replication and disease: insights from DNA polymerase gamma mutations. Cell Mol Life Sci 68:219–233

    Article  PubMed  CAS  Google Scholar 

  22. Chan SS, Copeland WC (2009) DNA polymerase gamma and mitochondrial disease: understanding the consequence of POLG mutations. Biochim Biophys Acta 1787:312–319

    Article  PubMed  CAS  Google Scholar 

  23. Euro L, Farnum GA, Palin E, Suomalainen A, Kaguni LS (2011) Clustering of alpers disease mutations and catalytic defects in biochemical variants reveal new features of molecular mechanism of the human mitochondrial replicase, Pol {gamma}. Nucleic Acids Res 39(21):9072–9084

    Article  PubMed  CAS  Google Scholar 

  24. Carrodeguas JA, Pinz KG, Bogenhagen DF (2002) DNA Binding Properties of Human pol gamma B. J Biol Chem 277:50008–50014

    Article  PubMed  CAS  Google Scholar 

  25. Longley MJ, Clark S, Yu Wai, Man C et al (2006) Mutant POLG2 Disrupts DNA Polymerase gamma Subunits and Causes Progressive External Ophthalmoplegia. Am J Hum Genet 78:1026–1034

    Article  PubMed  CAS  Google Scholar 

  26. Fan L, Kim S, Farr CL et al (2006) A novel processive mechanism for DNA synthesis revealed by structure, modeling and mutagenesis of the accessory subunit of human mitochondrial DNA polymerase. J Mol Biol 358:1229–1243

    Article  PubMed  CAS  Google Scholar 

  27. Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C (2001) Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell 7:43–54

    Article  PubMed  CAS  Google Scholar 

  28. Fan L, Sanschagrin PC, Kaguni LS, Kuhn LA (1999) The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl-tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Natl Acad Sci U S A 96:9527–9532

    Article  PubMed  CAS  Google Scholar 

  29. Lee YS, Kennedy WD, Yin YW (2009) Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell 139:312–324

    Article  PubMed  CAS  Google Scholar 

  30. Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW (2010) Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem 285:1490–1499

    Article  PubMed  CAS  Google Scholar 

  31. Yakubovshaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281:374–382

    Article  Google Scholar 

  32. Carrodeguas JA, Bogenhagen DF (2000) Protein sequences conserved in prokaryotic aminoacyl-tRNA synthetases are important for the activity of the processivity factor of human mitochondrial DNA polymerase. Nucleic Acids Res 28:1237–1244

    Article  PubMed  CAS  Google Scholar 

  33. Iyengar B, Luo N, Farr CL, Kaguni LS, Campos AR (2002) The accessory subunit of DNA polymerase gamma is essential for mitochondrial DNA maintenance and development in Drosophila melanogaster. Proc Natl Acad Sci U S A 99:4483–4488

    Article  PubMed  CAS  Google Scholar 

  34. Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73:293–320

    Article  PubMed  CAS  Google Scholar 

  35. Ferraris S, Clark S, Garelli E et al (2008) Progressive external ophthalmoplegia and vision and hearing loss in a patient with mutations in POLG2 and OPA1. Arch Neurol 65:125–131

    Article  PubMed  Google Scholar 

  36. Ratanajaraya C, Nishiyama H, Takahashi M et al (2011) A polymorphism of the POLG2 gene is genetically associated with the invasiveness of urinary bladder cancer in Japanese males. J Hum Genet 56:572–576

    Article  PubMed  CAS  Google Scholar 

  37. Michiels S, Danoy P, Dessen P et al (2007) Polymorphism discovery in 62 DNA repair genes and haplotype associations with risks for lung and head and neck cancers. Carcinogenesis 28:1731–1739

    Article  PubMed  CAS  Google Scholar 

  38. Huang H, Shiffman ML, Cheung RC et al (2006) Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology 130:1679–1687

    Article  PubMed  CAS  Google Scholar 

  39. Craig K, Young MJ, Blakely EL et al (2012) A p.R369G POLG2 mutation associated with adPEO and multiple mtDNA deletions causes decreased affinity between polymerase gamma subunits. Mitochondrion 12(2):313–319

    CAS  Google Scholar 

  40. Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74

    Article  PubMed  CAS  Google Scholar 

  41. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  PubMed  CAS  Google Scholar 

  42. Krishnan KJ, Reeve AK, Samuels DC et al (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40:275–279

    Article  PubMed  CAS  Google Scholar 

  43. Walter MC, Czermin B, Muller-Ziermann S et al (2010) Late-onset ptosis and myopathy in a patient with a heterozygous insertion in POLG2. J Neurol 257:1517–1523

    Article  PubMed  Google Scholar 

  44. Lee YS, Molineux IJ, Yin YW (2010) A single mutation in human mitochondrial DNA polymerase pol gammaA affects both polymerization and proofreading activities, but only as a holoenzyme. J Biol Chem 285:28105–28116

    Article  PubMed  CAS  Google Scholar 

  45. Luoma PT, Luo N, Loscher WN et al (2005) Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome. Hum Mol Genet 14:1907–1920

    Article  PubMed  CAS  Google Scholar 

  46. Chan SSL, Longley MJ, Copeland WC (2005) The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem 280:31341–31346

    Article  PubMed  CAS  Google Scholar 

  47. Ferrari G, Lamantea E, Donati A et al (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-{gamma}A. Brain 128:723–731

    Article  PubMed  Google Scholar 

  48. Kollberg G, Moslemi AR, Darin N et al (2006) POLG1 mutations associated with progressive encephalopathy in childhood. J Neuropathol Exp Neurol 65:758–768

    Article  PubMed  CAS  Google Scholar 

  49. Harrower T, Stewart JD, Hudson G et al (2008) POLG1 mutations manifesting as autosomal recessive axonal Charcot-Marie-Tooth disease. Arch Neurol 65:133–136

    Article  PubMed  Google Scholar 

  50. Taanman JW, Rahman S, Pagnamenta AT et al (2009) Analysis of mutant DNA polymerase gamma in patients with mitochondrial DNA depletion. Hum Mutat 30:248–254

    Article  PubMed  CAS  Google Scholar 

  51. Wong LJ, Naviaux RK, Brunetti-Pierri N et al (2008) Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat 29:E150–172

    Article  PubMed  Google Scholar 

  52. Szczepanowska K, Foury F (2010) A cluster of pathogenic mutations in the 3′-5′ exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation. Hum Mol Genet 19:3516–3529

    Article  PubMed  CAS  Google Scholar 

  53. Horvath R, Hudson G, Ferrari G et al (2006) Phenotypic spectrum associated with mutations of the mitochondrial polymerase {gamma} gene. Brain 129:1674–1684

    Article  PubMed  Google Scholar 

  54. Stewart JD, Tennant S, Powell H et al (2009) Novel POLG1 mutations associated with neuromuscular and liver phenotypes in adults and children. J Med Genet 46:209–214

    Article  PubMed  CAS  Google Scholar 

  55. Stewart JD, Schoeler S, Sitarz KS et al (2011) POLG mutations cause decreased mitochondrial DNA repopulation rates following induced depletion in human fibroblasts. Biochim Biophys Acta 1812:321–325

    Article  PubMed  CAS  Google Scholar 

  56. Aitken H, Gorman G, McFarland R, Roberts M, Taylor RW, Turnbull DM (2009) Clinical reasoning: Blurred vision and dancing feet: restless legs syndrome presenting in mitochondrial disease. Neurol 72:e86–90

    Article  CAS  Google Scholar 

  57. Harris MO, Walsh LE, Hattab EM, Golomb MR (2010) Is it ADEM, POLG, or both? Arch Neurol 67:493–496

    Article  PubMed  Google Scholar 

  58. Agostino A, Valletta L, Chinnery PF et al (2003) Mutations of ANT1, Twinkle, and POLG1 in sporadic progressive external ophthalmoplegia (PEO). Neurol 60:1354–1356

    Article  CAS  Google Scholar 

  59. Gonzalez-Vioque E, Blazquez A, Fernandez-Moreira D et al (2006) Association of novel POLG mutations and multiple mitochondrial DNA deletions with variable clinical phenotypes in a Spanish population. Arch Neurol 63:107–111

    Article  PubMed  Google Scholar 

  60. Chan SSL, Longley MJ, Copeland WC (2006) Modulation of the W748S mutation in DNA polymerase {gamma} by the E1143G polymorphism in mitochondrial disorders. Hum Mol Genet 15:3473–3483

    Article  PubMed  CAS  Google Scholar 

  61. Hakonen AH, Heiskanen S, Juvonen V et al (2005) Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 77:430–441

    Article  PubMed  CAS  Google Scholar 

  62. Kasiviswanathan R, Longley MJ, Chan SS, Copeland WC (2009) Disease mutations in the human mitochondrial DNA polymerase thumb subdomain impart severe defects in mtDNA replication. J Biol Chem 284:19501–19510

    Article  PubMed  CAS  Google Scholar 

  63. Wernette CM, Kaguni LS (1986) A mitochondrial DNA polymerase from embryos of Drosophila melanogaster. Purification, subunit structure, and partial characterization. J Biol Chem 261:14764–14770

    CAS  Google Scholar 

  64. Vanderstraeten S, Van den Brule S, Hu J, Foury F (1998) The role of 3′-5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 273:23690–23697

    Article  PubMed  CAS  Google Scholar 

  65. Viikov K, Valjamae P, Sedman J (2011) Yeast mitochondrial DNA polymerase is a highly processive single-subunit enzyme. Mitochondrion 11:119–126

    Article  PubMed  CAS  Google Scholar 

  66. Young MJ, Theriault SS, Li M, Court DA (2006) The carboxyl-terminal extension on fungal mitochondrial DNA polymerases: identification of a critical region of the enzyme from Saccharomyces cerevisiae. Yeast 23:101–116

    Article  PubMed  CAS  Google Scholar 

  67. Simossis VA, Heringa J (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 33:W289–294

    Article  PubMed  CAS  Google Scholar 

  68. Spinazzola A, Invernizzi F, Carrara F et al (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32:143–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rajesh Kasiviswanathan and Margaret Humble for critically reading this manuscript. This research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ES 065078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Copeland Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Young, M.J., Copeland, W.C. (2013). Mitochondrial Disorders Associated with the Mitochondrial DNA Polymerase g: A Focus on Intersubunit Interactions. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_3

Download citation

Publish with us

Policies and ethics