Skip to main content

Biochemical and Molecular Methods for the Study of Mitochondrial Disorders

  • Chapter
  • First Online:
Mitochondrial Disorders Caused by Nuclear Genes

Abstract

Mitochondrial respiratory chain disorders (RCD) are a group of genetically and clinically heterogeneous diseases that can be caused by mutations in the mitochondrial or nuclear genome. Due to the complexity of the disorders and the consideration of the two genomes, diagnosis of these disorders can be difficult. Diagnosis requires the combination of clinical, biochemical, histopathological, imaging, and molecular evaluations. Usually, the disease is first suspected based on clinical assessment, followed by simple analyses of metabolic markers. The diagnosis of the disease maybe supported by non-invasive imaging evaluation, for example, magnetic resonance imaging (MRI) or magnetic resonance spectrum (MRS), or biochemical and histochemical studies of invasive muscle biopsies. The definitive diagnosis is usually arrived by the identification of the causative deleterious mutations in the genes involved in mitochondrial biogenesis, respiratory chain function, or other mitochondrial structural/functional proteins. Based on years of clinical and diagnostic experience, a molecular testing algorithm has been developed. Various biochemical and molecular methods used in the diagnostic algorithms are described in this chapter. The application of novel technologies including oligonucleotide array comparative genome hybridization (aCGH), and massively parallel sequencing of target genes are reviewed. Capture of all genes targeting to the mitochondria followed by new generation high throughput sequencing may be the ultimate approach for a one-step comprehensive molecular diagnosis of complex dual genome mitochondrial disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMauro S (2004) The many faces of mitochondrial diseases. Mitochondrion 4(5–6):799–807

    PubMed  CAS  Google Scholar 

  2. DiMauro S (2011) A history of mitochondrial diseases. J Inherit Metab Dis 34(2):261–276

    PubMed  CAS  Google Scholar 

  3. Smeitink J, van den, Heuvel L DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2(5):342–352

    PubMed  CAS  Google Scholar 

  4. Spinazzola A, Zeviani M (2007) Disorders of nuclear-mitochondrial intergenomic communication. Biosci Rep 27(1–3):39–51

    PubMed  CAS  Google Scholar 

  5. Wong LJ (2010) Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev 16(2):154–162

    PubMed  Google Scholar 

  6. Wong LJ et al (2010) Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 100(2):111–117

    PubMed  CAS  Google Scholar 

  7. Calvo S et al (2006) Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 38(5):576–582

    PubMed  CAS  Google Scholar 

  8. Dimmock DP et al (2008) Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum Mutat 29(2):330–331

    PubMed  CAS  Google Scholar 

  9. El-Hattab AW et al (2010) MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab 99(3):300–308

    PubMed  CAS  Google Scholar 

  10. Tang S et al (2011) Mitochondrial DNA polymerase {gamma} mutations: an ever expanding molecular and clinical spectrum. J Med Genet 48(10):669–681

    PubMed  CAS  Google Scholar 

  11. Wong LJ, Boles RG (2005) Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 354(1–2):1–20

    PubMed  CAS  Google Scholar 

  12. Galbiati S et al (2006) New mutations in TK2 gene associated with mitochondrial DNA depletion. Pediatr Neurol 34(3):177–185

    PubMed  Google Scholar 

  13. Ghezzi D et al (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41(6):654–656

    PubMed  CAS  Google Scholar 

  14. Hoefs SJ et al (2010) Novel mutations in the NDUFS1 gene cause low residual activities in human complex I deficiencies. Mol Genet Metab 100(3):251–256

    PubMed  CAS  Google Scholar 

  15. Nishino I, Spinazzola A, Hirano M (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Sci 283(5402):689–692

    CAS  Google Scholar 

  16. Ostergaard E et al (2007) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81(2):383–387

    PubMed  CAS  Google Scholar 

  17. Quinzii C et al (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78(2):345–349

    PubMed  CAS  Google Scholar 

  18. Randolph LM et al (2011) Fatal infantile lactic acidosis and a novel homozygous mutation in the SUCLG1 gene: a mitochondrial DNA depletion disorder. Mol Genet Metab 102(2):149–152

    PubMed  CAS  Google Scholar 

  19. Tang S et al (2012) Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)-like phenotype: an expanded clinical spectrum of POLG1 mutations. J Neurol 259(5):862–868

    PubMed  Google Scholar 

  20. Trevisson E et al (2011) Coenzyme Q deficiency in muscle. Curr Opin Neurol 24(5):449–456

    PubMed  CAS  Google Scholar 

  21. Wong LJ et al (2007) Mutations in the MPV17 gene are responsible for rapidly progressive liver failure in infancy. Hepatol 46(4):1218–1227

    CAS  Google Scholar 

  22. Scheper GC et al (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39(4):534–539

    PubMed  CAS  Google Scholar 

  23. Spinazzola A et al (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J Inherit Metab Dis 32(2):143–158

    PubMed  CAS  Google Scholar 

  24. Spinazzola A, Zeviani M (2009) Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med 265(2):174–192

    PubMed  CAS  Google Scholar 

  25. Milone M et al (2008) Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 18(8):626–632

    PubMed  Google Scholar 

  26. Milone M et al (2011) Novel POLG splice site mutation and optic atrophy. Arch Neurol 68(6):806–811

    PubMed  Google Scholar 

  27. Koene S, Smeitink J (2009) Mitochondrial medicine: entering the era of treatment. J Intern Med 265(2):193–209

    PubMed  CAS  Google Scholar 

  28. Pagliarini DJ et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123

    PubMed  CAS  Google Scholar 

  29. Spinazzola A, Zeviani M (2005) Disorders of nuclear-mitochondrial intergenomic signaling. Gene 354:162–168

    PubMed  CAS  Google Scholar 

  30. Bykhovskaya Y et al (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74(6):1303–1308

    PubMed  CAS  Google Scholar 

  31. Edvardson S et al (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81(4):857–862

    PubMed  CAS  Google Scholar 

  32. Miller C et al (2004) Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 56(5):734–738

    PubMed  CAS  Google Scholar 

  33. Smeitink JA et al (2006) Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet 79(5):869–877

    PubMed  CAS  Google Scholar 

  34. Valente L et al (2009) The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex. Biochim Biophys Acta 1792(8):791–795

    CAS  Google Scholar 

  35. Valente L et al (2007) Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 80(1):44–58

    PubMed  CAS  Google Scholar 

  36. Antonicka H et al (2003) Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72(1):101–114

    PubMed  CAS  Google Scholar 

  37. Hoefs SJ et al (2008) NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet 82(6):1306–1315

    PubMed  CAS  Google Scholar 

  38. Saada A et al (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84(6):718–727

    PubMed  CAS  Google Scholar 

  39. Tay SK et al (2004) Association of mutations in SCO2, a cytochrome c oxidase assembly gene, with early fetal lethality. Arch Neurol 61(6):950–952

    PubMed  Google Scholar 

  40. Tiranti V et al (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63(6):1609–1621

    PubMed  CAS  Google Scholar 

  41. Valnot I et al (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67(5):1104–1109

    PubMed  CAS  Google Scholar 

  42. Willems PH et al (2008) Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency. Cell Calcium 44(1):123–133

    PubMed  CAS  Google Scholar 

  43. de Lonlay P et al (2001) A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29(1):57–60

    PubMed  CAS  Google Scholar 

  44. Dieteren CE et al (2008) Subunits of mitochondrial complex I exist as part of matrix- and membrane-associated subcomplexes in living cells. J Biol Chem 283(50):34753–34761

    PubMed  CAS  Google Scholar 

  45. Bianchi MS, Bianchi NO, Bailliet G (1995) Mitochondrial DNA mutations in normal and tumor tissues from breast cancer patients. Cytogenet Cell Genet 71(1):99–103

    PubMed  CAS  Google Scholar 

  46. Corral-Debrinski M et al (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329

    PubMed  CAS  Google Scholar 

  47. Geisler S et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    PubMed  CAS  Google Scholar 

  48. Walker UA, Collins S, Byrne E (1996) Respiratory chain encephalomyopathies: a diagnostic classification. Eur Neurol 36(5):260–267

    PubMed  CAS  Google Scholar 

  49. Bernier FP et al (2002) Diagnostic criteria for respiratory chain disorders in adults and children. Neurol 59(9):1406–1411

    CAS  Google Scholar 

  50. Scaglia F et al (2006) Molecular bases of hearing loss in multi-systemic mitochondrial cytopathy. Genet Med 8(10):641–652

    PubMed  Google Scholar 

  51. Calvo SE et al (2012) Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 4(118):118–ra10

    Google Scholar 

  52. Tang S, Huang T (2010) Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. Biotech 48(4):287–296

    CAS  Google Scholar 

  53. Vasta V et al (2009) Next generation sequence analysis for mitochondrial disorders. Genome Med 1(10):100

    PubMed  Google Scholar 

  54. Carrozzo R et al (2007) SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130(Pt 3):862–874

    PubMed  Google Scholar 

  55. Fernandez-Vizarra E et al (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44(3):173–180

    PubMed  CAS  Google Scholar 

  56. Lebon S et al (2007) A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab 92(1–2):104–108

    PubMed  CAS  Google Scholar 

  57. Matthews PM et al (1994) Pyruvate dehydrogenase deficiency. Clinical presentation and molecular genetic characterization of five new patients. Brain 117 (Pt 3):435–443

    PubMed  Google Scholar 

  58. Rahman S et al (2001) A SURF1 gene mutation presenting as isolated leukodystrophy. Ann Neurol 49(6):797–800

    PubMed  CAS  Google Scholar 

  59. Elpeleg O et al (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76(6):1081–1086

    PubMed  CAS  Google Scholar 

  60. Mandel H et al (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29(3):337–341

    PubMed  CAS  Google Scholar 

  61. Saada A et al (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29(3):342–324

    PubMed  CAS  Google Scholar 

  62. Debray FG et al (2007) Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin Chem 53(5):916–921

    PubMed  CAS  Google Scholar 

  63. Wolf NI, Smeitink JA (2002) Mitochondrial disorders: a proposal for consensus diagnostic criteria in infants and children. Neurol 59(9):1402–1405

    Google Scholar 

  64. Campos Y et al (1995) Mitochondrial DNA deletion in a patient with mitochondrial myopathy, lactic acidosis, and stroke-like episodes (MELAS) and Fanconi’s syndrome. Pediatr Neurol 13(1):69–72

    PubMed  CAS  Google Scholar 

  65. Niaudet P et al (1994) Deletion of the mitochondrial DNA in a case of de Toni-Debre-Fanconi syndrome and Pearson syndrome. Pediatr Nephrol 8(2):164–168

    PubMed  CAS  Google Scholar 

  66. Barshop BA (2004) Metabolomic approaches to mitochondrial disease: correlation of urine organic acids. Mitochondrion 4(5–6):521–527

    PubMed  CAS  Google Scholar 

  67. Gibson KM et al (1991) Phenotypic heterogeneity in the syndromes of 3-methylglutaconic aciduria. J Pediatr 118(6):885–890

    PubMed  CAS  Google Scholar 

  68. Sperl W et al (2006) Deficiency of mitochondrial ATP synthase of nuclear genetic origin. Neuromuscul Disord 16(12):821–829

    PubMed  CAS  Google Scholar 

  69. Cizkova A et al (2008) TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet 40(11):1288–1290

    PubMed  CAS  Google Scholar 

  70. Shchelochkov OA et al (2010) Milder clinical course of type IV 3-methylglutaconic aciduria due to a novel mutation in TMEM70. Mol Genet Metab 101(2–3):282–285

    PubMed  CAS  Google Scholar 

  71. Ostergaard E et al (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130(Pt 3):853–861

    PubMed  Google Scholar 

  72. Tanji K (2012) Morphological assessment of mitochondrial respiratory chain function on tissue sections. Methods Mol Biol 837:181–194

    PubMed  CAS  Google Scholar 

  73. Milone M et al (2009) Mitochondrial disorder with OPA1 mutation lacking optic atrophy. Mitochondrion 9(4):279–281

    PubMed  CAS  Google Scholar 

  74. Frazier AE, Thorburn DR (2012) Biochemical analyses of the electron transport chain complexes by spectrophotometry. Methods Mol Biol 837:49–62

    PubMed  CAS  Google Scholar 

  75. Grazina MM (2012) Mitochondrial respiratory chain: biochemical analysis and criterion for deficiency in diagnosis. Methods Mol Biol 837:73–91

    PubMed  CAS  Google Scholar 

  76. Mollet J et al (2007) Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest 117(3):765–772

    PubMed  CAS  Google Scholar 

  77. Quinzii CM et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurol 64(3):539–541

    CAS  Google Scholar 

  78. Li Z, Graham BH (2012) Measurement of mitochondrial oxygen consumption using a Clark electrode. Methods Mol Biol 837:63–72

    PubMed  CAS  Google Scholar 

  79. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    PubMed  CAS  Google Scholar 

  80. Trounce IA et al (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    PubMed  CAS  Google Scholar 

  81. Leary SC (2012) Blue native polyacrylamide gel electrophoresis: a powerful diagnostic tool for the detection of assembly defects in the enzyme complexes of oxidative phosphorylation. Methods Mol Biol 837:195–206

    PubMed  CAS  Google Scholar 

  82. Sasarman F, Shoubridge EA (2012) Radioactive labeling of mitochondrial translation products in cultured cells. Methods Mol Biol 837:207–217

    PubMed  CAS  Google Scholar 

  83. Antonicka H et al (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278(44):43081–43088

    PubMed  CAS  Google Scholar 

  84. Weraarpachai W et al (2012) Mutations in C12orf62, a factor that couples COX I synthesis with cytochrome c oxidase assembly, cause fatal neonatal lactic acidosis. Am J Hum Genet 90(1):142–151

    PubMed  CAS  Google Scholar 

  85. Leary SC et al (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13(17):1839–1848

    PubMed  CAS  Google Scholar 

  86. Diaz F, Barrientos A, Fontanesi F (2009) Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using blue native gel electrophoresis. Curr Protoc Hum Genet 19:19.4

    Google Scholar 

  87. Zerbetto E, Vergani L, Dabbeni-Sala F (1997) Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 18(11):2059–2064

    PubMed  CAS  Google Scholar 

  88. Weraarpachai W et al (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 41(7):833–837

    PubMed  CAS  Google Scholar 

  89. Ogasahara S et al (1986) Treatment of Kearns-Sayre syndrome with coenzyme Q10. Neurol 36(1):45–53

    CAS  Google Scholar 

  90. Horvath R (2012) Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ(10)). J Inherit Metab Dis 35(4):679–687

    Google Scholar 

  91. Liang WC et al (2009) ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 19(3):212–216

    PubMed  Google Scholar 

  92. Ohkuma A et al (2009) Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve 39(3):333–342

    PubMed  Google Scholar 

  93. Tang PH, Miles MV (2012) Measurement of oxidized and reduced coenzyme Q in biological fluids, cells, and tissues: an HPLC-EC method. Methods Mol Biol 837:149–168

    PubMed  CAS  Google Scholar 

  94. Hahn SH, Kerfoot S, Vasta V (2012) Assay to measure oxidized and reduced forms of CoQ by LC-MS/MS. Methods Mol Biol 837:169–179

    PubMed  CAS  Google Scholar 

  95. Ruiz-Jimenez J et al (2007) Determination of the ubiquinol-10 and ubiquinone-10 (coenzyme Q10) in human serum by liquid chromatography tandem mass spectrometry to evaluate the oxidative stress. J Chromatogr A 1175(2):242–248

    PubMed  CAS  Google Scholar 

  96. Shanske S, Wong LJ (2004) Molecular analysis for mitochondrial DNA disorders. Mitochondrion 4(5–6):403–415

    PubMed  CAS  Google Scholar 

  97. Wong LJ, Lam CW (1997) Alternative, noninvasive tissues for quantitative screening of mutant mitochondrial DNA. Clin Chem 43(7):1241–1243

    PubMed  CAS  Google Scholar 

  98. Wong LJ, Senadheera D (1997) Direct detection of multiple point mutations in mitochondrial DNA. Clin Chem 43(10):1857–1861

    PubMed  CAS  Google Scholar 

  99. Tang S et al (2012) Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization. Methods Mol Biol 837:259–279

    PubMed  CAS  Google Scholar 

  100. Brautbar A et al (2008) The mitochondrial 13513G>A mutation is associated with Leigh disease phenotypes independent of complex I deficiency in muscle. Mol Genet Metab 94(4):485–490

    PubMed  CAS  Google Scholar 

  101. Wang J et al (2009) Two mtDNA mutations 14487T>C (M63V, ND6) and 12297T>C (tRNA Leu) in a Leigh syndrome family. Mol Genet Metab 96(2):59–65

    PubMed  CAS  Google Scholar 

  102. Ware SM et al (2009) Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet 46(5):308–314

    PubMed  CAS  Google Scholar 

  103. Suomalainen A et al (1992) Use of single strand conformation polymorphism analysis to detect point mutations in human mitochondrial DNA. J Neurol Sci 111(2):222–226

    PubMed  CAS  Google Scholar 

  104. Wong LJ, Chen TJ, Tan DJ (2004) Detection of mitochondrial DNA mutations using temporal temperature gradient gel electrophoresis. Electrophoresis 25(15):2602–2610

    PubMed  CAS  Google Scholar 

  105. Chen TJ, Boles RG, Wong LJ (1999) Detection of mitochondrial DNA mutations by temporal temperature gradient gel electrophoresis. Clin Chem 45(8 Pt 1):1162–1167

    PubMed  CAS  Google Scholar 

  106. Wartell RM, Hosseini SH, Moran CP Jr (1990) Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res 18(9):2699–2705

    PubMed  CAS  Google Scholar 

  107. Michikawa Y et al (1997) Comprehensive, rapid and sensitive detection of sequence variants of human mitochondrial tRNA genes. Nucleic Acids Res 25(12):2455–2463

    PubMed  CAS  Google Scholar 

  108. Sternberg D et al (1998) Exhaustive scanning approach to screen all the mitochondrial tRNA genes for mutations and its application to the investigation of 35 independent patients with mitochondrial disorders. Hum Mol Genet 7(1):33–42

    PubMed  CAS  Google Scholar 

  109. Van Den Bosch BJ et al (2000) Mutation analysis of the entire mitochondrial genome using denaturing high performance liquid chromatography. Nucleic Acids Res 28(20):E89

    PubMed  CAS  Google Scholar 

  110. Landsverk ML, Cornwell ME, Palculict ME (2012) Sequence analysis of the whole mitochondrial genome and nuclear genes causing mitochondrial disorders. Methods Mol Biol 837:281–300

    PubMed  CAS  Google Scholar 

  111. Cui H, Zhang W, Wong LJC (2011) Comprehensive molecular analyses of mitochondrial genome by next-generation sequencing. In: 12th international congress of human genetics/61st annual meeting of the American Society of Human Genetics, Montreal, Canada

    Google Scholar 

  112. Dimmock D et al (2010) Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 56(7):1119–1127

    PubMed  CAS  Google Scholar 

  113. Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50(6):996–1001

    PubMed  CAS  Google Scholar 

  114. Cox R et al (2011) Leigh syndrome caused by a novel m.4296G>A mutation in mitochondrial tRNA isoleucine. Mitochondrion 12(2):258–261

    PubMed  Google Scholar 

  115. Enns GM et al (2006) Molecular-clinical correlations in a family with variable tissue mitochondrial DNA T8993G mutant load. Mol Genet Metab 88(4):364–371

    PubMed  CAS  Google Scholar 

  116. Venegas V, Halberg MC (2012) Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol Biol 837:313–326

    PubMed  CAS  Google Scholar 

  117. Lacbawan F et al (2000) Clinical heterogeneity in mitochondrial DNA deletion disorders: a diagnostic challenge of Pearson syndrome. Am J Med Genet 95(3):266–268

    PubMed  CAS  Google Scholar 

  118. Sadikovic B et al (2010) Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes. PLoS ONE 5(12):e15687

    PubMed  CAS  Google Scholar 

  119. Wong LJ (2001) Recognition of mitochondrial DNA deletion syndrome with non-neuromuscular multisystemic manifestation. Genet Med 3(6):399–404

    PubMed  CAS  Google Scholar 

  120. Chinault AC et al (2009) Application of dual-genome oligonucleotide array-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes. Genet Med 11(7):518–526

    PubMed  CAS  Google Scholar 

  121. Wong LJ et al (2008) Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem 54(7):1141–1148

    PubMed  CAS  Google Scholar 

  122. Wang J et al (2012) Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mole Genet Metab 106(2):221–230

    CAS  Google Scholar 

  123. Wong LJ et al (2003) Compensatory amplification of mtDNA in a patient with a novel deletion/duplication and high mutant load. J Med Genet 40(11):e125

    PubMed  Google Scholar 

  124. Bourdon A et al (2007) Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39(6):776–780

    PubMed  CAS  Google Scholar 

  125. Hakonen AH et al (2007) Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 130(Pt 11):3032–3040

    PubMed  Google Scholar 

  126. Spinazzola A (2011) Mitochondrial DNA mutations and depletion in pediatric medicine. Semin Fetal Neonatal Med 16(4):190–196

    PubMed  CAS  Google Scholar 

  127. Bai RK, Wong LJ (2005) Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J Mol Diagn 7(5):613–622

    PubMed  CAS  Google Scholar 

  128. Zhang W, Cui H, Wong LJ (2012) Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing in a clinical diagnostic laboratory. Clin Chem (Epub PMID: 22777720)

    Google Scholar 

  129. Zhang W, Cui H, Wong LJC (2011) Next generation sequencing in clinical diagnostic laboratories: implementation of quantitative and qualitative controls in dual genome analysis. In: Association for molecular pathology 2011 annual meeting, Grapevine, TX

    Google Scholar 

  130. Shaibani A et al (2009) Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Arch Neurol 66(8):1028–1032

    PubMed  Google Scholar 

  131. Compton AG et al (2011) Application of oligonucleotide array CGH in the detection of a large intragenic deletion in POLG associated with Alpers Syndrome. Mitochondrion 11(1):104–107

    PubMed  CAS  Google Scholar 

  132. Douglas GV et al (2011) Detection of uniparental isodisomy in autosomal recessive mitochondrial DNA depletion syndrome by high-density SNP array analysis. J Hum Genet 56(12):834–839

    PubMed  CAS  Google Scholar 

  133. Lee NC et al (2009) Simultaneous detection of mitochondrial DNA depletion and single-exon deletion in the deoxyguanosine gene using array-based comparative genomic hybridisation. Arch Dis Child 94(1):55–58

    PubMed  Google Scholar 

  134. Zhang S et al (2010) Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion. Mol Genet Metab 99(1):53–57

    PubMed  CAS  Google Scholar 

  135. Wang J, Rakhade M (2012) Utility of array CGH in molecular diagnosis of mitochondrial disorders. Methods Mol Biol 837:301–312

    PubMed  CAS  Google Scholar 

  136. Bainbridge MN et al (2011) Whole-genome sequencing for optimized patient management. Sci Transl Med 3(87):87–re3

    Google Scholar 

  137. Lupski JR et al (2011) Clan genomics and the complex architecture of human disease. Cell 147(1):32–43

    PubMed  CAS  Google Scholar 

  138. Worthey EA et al (2011) Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med 13(3):255–262

    PubMed  Google Scholar 

  139. Wang J et al (2012) An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience. Genet Med 14(6):620–626

    PubMed  CAS  Google Scholar 

  140. Zhang VW, Wang J (2012) Determination of the clinical significance of an unclassified variant. Methods Mol Biol 837:337–348

    PubMed  CAS  Google Scholar 

  141. Richards CS et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Jun C. Wong PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wong, LJ.C. (2013). Biochemical and Molecular Methods for the Study of Mitochondrial Disorders. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_2

Download citation

Publish with us

Policies and ethics