Impact of Electrode Roughness on Metal-Insulator-Metal (MIM) Diodes and Step Tunneling in Nanolaminate Tunnel Barrier Metal-Insulator-Insulator-Metal (MIIM) Diodes



In this chapter, the impact of electrode roughness and bilayer insulator tunnel barriers on the performance of metal-insulator-metal (MIM) diodes are discussed. The effect of bottom electrode roughness on the current versus voltage (IV) characteristics of asymmetric electrode M1IM2 tunnel diodes is discussed first. Atomic layer deposition (ALD) is used to deposit high quality insulators independent of bottom metal electrode. It is shown that bottom electrode roughness can strongly influence the IV characteristics of M1IM2 diodes, overwhelming even the metal work function difference induced asymmetry. Devices with smoother bottom electrodes are shown to produce IV behavior with better agreement with Fowler–Nordheim tunneling theory as well as yield a higher percentage of well-functioning devices. By combining high quality uniform tunnel barriers deposited by ALD with atomically smooth (~0.3 nm RMS roughness) bottom electrodes, highly nonlinear and asymmetric MIM tunnel diodes with good reproducibility and stable IV behavior are produced. Next, the impact of nanolaminate bilayer insulator tunnel barriers on asymmetric metal work function metal-insulator-insulator-metal (M1I1I2M2 & M1I2I1M2) devices is discussed. It is demonstrated that bilayer tunnel barriers can be arranged to either enhance, oppose, or even reverse the asymmetry induced by the asymmetric work function electrodes. These results represent experimental demonstration that step tunneling (a step change in the tunneling distance through a bilayer tunnel barrier) can dominate the IV asymmetry of M1IIM2 diodes with asymmetric work function electrodes. By combining bilayer tunnel barriers with asymmetric metal electrodes, devices are made with voltage asymmetry and nonlinearity that exceed that of standard single layer asymmetric electrode M1IM2 devices as well as that of symmetric electrode M1I1I2M1 devices.


Atomic Layer Deposition Bottom Electrode Band Diagram Resonant Tunneling Tunnel Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by grants from the National Science Foundation (through DMR-0805372 and an REU supplement), the U.S. Army Research Laboratory (through W911NF-07-2-0083), and the Oregon Nanoscience and Microtechnologies Institute. The authors thank Matt Chin, Madan Dubey, and Steve Kilpatrick of the U.S. Army Research Lab for sputtered Pt films and support, Prof. John Wager, Bill Cowell, and John McGlone of the Oregon State University School of Electrical Engineering and Computer Science for the ZrCuAlNi films used in this study, Prof. Douglas Keszler of the Oregon State University Dept. of Chemistry, Wei Wang for assistance with AFM, Chris Tasker for equipment support, Dr. P. Eschbach for assistance with TEM imaging, Cheng Tan and Ben Lambert for assistance with data collection, and Dr. David Evans of Sharp Labs of America for evaporated Ir and Pt films.


  1. 1.
    Alimardani N, Cowell III EW, Wager JF, Conley Jr JF, Evans DR, Chin M, Kilpatrick SJ, Dubey M. Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J Vac Sci Tech. 2012;A 30:01A113-1–01A113-5.Google Scholar
  2. 2.
    Cowell III EW, Alimardani N, Knutson CC, Conley Jr JF, Keszler DA, Gibbons BJ, Wager JF. Advancing MIM electronics: amorphous metal electrodes. Adv Mater. 2011;23:74–8.CrossRefGoogle Scholar
  3. 3.
    Choi K, Yesilkoy F, Ryu G, Cho SH, Goldsman N, Dagenais M, Peckerar M. A focused asymmetric metal–insulator–metal tunneling diode: fabrication, DC characteristics and RF rectification analysis. IEEE Trans Electron Dev. 2011;58(10):3519–28.CrossRefGoogle Scholar
  4. 4.
    Bareiß M, Hochmeister A, Jegert G, Zschieschang U, Klauk H, Huber R, Grundler D, Porod W, Fabel B, Scarpa G, Lugli P. Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes. J Appl Phys. 2011;110:044316- 044316–5.Google Scholar
  5. 5.
    Maraghechi P, Foroughi-Abari A, Cadien K, Elezzabi AY. Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl Phys Lett. 2011. doi: 10.1063/1.3671071.Google Scholar
  6. 6.
    Alimardani N, Conley JF Jr, Cowell III, EW, Wager JF, Chin M, Kilpatrick SJ, Dubey M. Stability and bias stressing of metal/insulator/metal diodes. IEEE IIRW Final Report. 2010. doi: 10.1109/IIRW.2010.5706491.Google Scholar
  7. 7.
    Periasamy P, Berry JJ, Dameron AA, Bergeson JD, Ginley DS, O’Hayre RP, Parilla PA. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv Mater. 2011. doi: 10.1002/adma.201101115.Google Scholar
  8. 8.
    O’Regan T, Chin M, Tan C, Birdwell A. Modeling, fabrication, and electrical testing of Metal-Insulator-Metal diode. 2011. ARL-TN-0464.Google Scholar
  9. 9.
    Grover S, Moddel G. Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers. Solid State Electron. 2012;67:94–9.CrossRefGoogle Scholar
  10. 10.
    Maraghechi P, Foroughi-Abari A, Cadien K, Elezzabi AY. Observation of resonant tunneling phenomenon in metal-insulator-insulator-insulator-metal electron tunnel devices. Appl Phys Lett. 2012. doi: 10.1063/1.3694024.Google Scholar
  11. 11.
    Alimardani N, Conley JF Jr. Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl Phys Lett. 2013;102:143501 doi:  10.1063/1.4799964.
  12. 12.
    Corkish R, Green MA, Puzzer T. Solar energy collection by antennas. Sol Energ. 2002;73(6):395–401.CrossRefGoogle Scholar
  13. 13.
    B Berland. 2003. NREL SR-520-33263 Final Report.Google Scholar
  14. 14.
    Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovoltaics. 2011;1:78–83.CrossRefGoogle Scholar
  15. 15.
    Miskovsky NM, Cutler PH, Mayer A, Weiss BL, Willis B, Sullivan TE, Lerner PB. Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: a new approach. J Nanotechnol. 2012;2012:1–19.CrossRefGoogle Scholar
  16. 16.
    Mead CA. Operation of tunnel-emission devices. J Appl Phys. 1961;32(4):646–52.CrossRefGoogle Scholar
  17. 17.
    Heiblum M. Tunneling hot electron transfer amplifiers (theta): amplifiers operating up to the infrared. Solid State Electron. 1981;24:343–66.CrossRefGoogle Scholar
  18. 18.
    Sze SM, Ng KK. Physics of semiconductor devices. 3rd ed. Hoboken, NJ: Wiley; 2002.Google Scholar
  19. 19.
    Hobbs PCD, Laibowitz RB, Libsch FR. Ni-NiO-Ni tunnel junctions for terahertz and infrared detection. Appl Optics. 2005;44(32):6813–22.CrossRefGoogle Scholar
  20. 20.
    Hobbs PCD, Laibowitz RB, Libsch FR, LaBianca NC, Chiniwalla PP. Efficient waveguide-integrated tunnel junction detectors at 1.6 μm. Opt Express. 2007;15(25):16367–89.CrossRefGoogle Scholar
  21. 21.
    Krishnan S, La Rosa H, Stefanakos E, Bhansali S, Buckle K. Effects of dielectric thickness and contact area on current–voltage characteristics of thin film metal-insulator-metal diodes. Thin Solid Films. 2008;516:2244–50.CrossRefGoogle Scholar
  22. 22.
    Bean JA, Tiwari B, Bernstein GH, Fay P, Porod W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J Vac Sci Technol B. 2009;27:11–4.CrossRefGoogle Scholar
  23. 23.
    Bean JA, Weeks A, Boreman GD. Performance optimization of antenna-coupled Al/AlOx/Pt tunnel diode infrared detectors. IEEE J Quantum Electron. 2011;47(1):126.CrossRefGoogle Scholar
  24. 24.
    Bareiß M, Tiwari BN, Hochmeister A, Jegert G, Zschieschang U, Klauk H, Fabel B, Scarpa G, Koblmuller G, Bernstein GH, Porod W, Lugli P. Nano antenna array for terahertz detection. IEEE Trans Micro Technol. 2011;59(10):2751–7.CrossRefGoogle Scholar
  25. 25.
    Reuss RH, et al. Macroelectronics: perspectives on technology and applications. Proc IEEE. 2005;93(7):1239–56.CrossRefGoogle Scholar
  26. 26.
    den Boer W. Active matrix liquid crystal displays. Amsterdam: Elsevier; 2005.Google Scholar
  27. 27.
    Handy RM. Electrode effects on aluminum oxide tunnel junctions. Phys Rev. 1962;126(6):1968–73.CrossRefGoogle Scholar
  28. 28.
    Meyerhofer D, Ochs SA. Current flow in very thin films of Al2O3 and BeO. J Appl Phys. 1963;34(9):2535–43.CrossRefGoogle Scholar
  29. 29.
    Duke CB. Tunneling in solids. New York: Academic; 1969.Google Scholar
  30. 30.
    Elchinger GM, Sanchez A, Davis Jr CF, Javan A. Mechanism of detection of radiation in a high-speed metal-metal oxide-metal junction in the visible region and at longer wavelengths. J Appl Phys. 1976;47(2):591–4.CrossRefGoogle Scholar
  31. 31.
    Heiblum M, Wang S, Whinnery JR, Gustafson TK. Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J Quantum Electron. 1978;QE-14(3):159–69.CrossRefGoogle Scholar
  32. 32.
    Kleinsasser AW, Buhrman RA. High-quality submicron niobium tunnel junctions with reactive-ion-beam oxidation. J Appl Phys. 1980;37:841–3.Google Scholar
  33. 33.
    Brunner M, Ekrut H, Hahn A. Metal-oxide-metal tunneling junctions on Ta and Nb: background conductivity resulting from different oxide barriers. J Appl Phys. 1982;53(3):1596–601.CrossRefGoogle Scholar
  34. 34.
    Grossman EN, Harvey TE, Reintsema CD. Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes. J Appl Phys. 2002;91(12):10134–9.CrossRefGoogle Scholar
  35. 35.
    Fisher JC, Giaever I. Tunneling through thin insulating layers. J Appl Phys. 1961;32:172–7.CrossRefGoogle Scholar
  36. 36.
    Simmons JG. Conduction in thin dielectric films. J Phys D: Appl Phys. 1971;4:613–57.CrossRefGoogle Scholar
  37. 37.
    Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys. 1963;34(6):1793–803.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Simmons JG. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J Appl Phys. 1963;34(9):2581–90.CrossRefzbMATHGoogle Scholar
  39. 39.
    Miller CW, Li Z, Åkerman J, Schuller IK. Impact of interfacial roughness on tunneling conductance and extracted barrier parameters. Appl Phys Lett. 2007;90:043513.CrossRefGoogle Scholar
  40. 40.
    Ekurt H, Hahn A. Polarity‐dependent tunneling conductance of Ta/Ta2O5/Ag junctions. J Appl Phys. 1980;51:1686–91.CrossRefGoogle Scholar
  41. 41.
    Kroemer H. Band offsets and chemical bonding: the basic for heterostructure applications. Physica Scripta. 1996;T68:10–6.CrossRefGoogle Scholar
  42. 42.
    Schulz PA, Gonçalves da Silva CET. Two-step barrier diodes. Appl Phys Lett. 1988;52(12):960.CrossRefGoogle Scholar
  43. 43.
    Di Ventra M, Papa G, Coluzza C, Baldereschi A, Schulz PA. Indented barrier resonant tunneling rectifiers. J Appl Phys. 1996;80(7):4174–6.CrossRefGoogle Scholar
  44. 44.
    Southwick III RG, Sup A, Jain A, Knowlton WB. An interactive simulation tool for complex multilayer dielectric devices. IEEE Trans Dev Mater Reliab. 2011;11(2):236–43.CrossRefGoogle Scholar
  45. 45.
    Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48:279–306.CrossRefGoogle Scholar
  46. 46.
    Sharma P, Zhang W, Amiya K, Kimura H, Inoue A. Nanoscale patterning of Zr-Al-Cu-Ni metallic glass thin films deposited by magnetron sputtering. J Nanosci Nanotechnol. 2005;5:416–20.CrossRefGoogle Scholar
  47. 47.
    Sharma P, Kaushik N, Kimura H, Saotome Y, Inoue A. Nano-fabrication with metallic glass—an exotic material for nano-electromechical systems. Nanotechnology. 2007;18(035302):1–6.Google Scholar
  48. 48.
    Grubbs ME, Zhang X, Deal M, Nishi Y, Clemens BM. Development and characterization of high temperature stable Ta–W–Si–C amorphous metal gates. Appl Phys Lett. 2010; 97:223505-223505-3.Google Scholar
  49. 49.
    Michaelson HB. The work function of the elements and its periodicity. J Appl Phys. 1977;48:4729–33.CrossRefGoogle Scholar
  50. 50.
    Crozier KB, Sundaramurthy A, Kino GS, Quate CF. Optical antennas: resonators for local field enhancement. J Appl Phys. 2003. doi: 10.1063/1.1602956.Google Scholar
  51. 51.
    Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys. 2004. doi: 10.1063/1.1629280.Google Scholar
  52. 52.
    Hashem EI, Rafat NH, Soliman EA. Theoretical study of metal-insulator-metal tunneling diodes figures of merit. IEEE J Quantum Electron. 2013;49(1):72–9.CrossRefGoogle Scholar
  53. 53.
    Mott NF. Conduction in non-crystalline materials. Oxford: Oxford University Press; 1993.Google Scholar
  54. 54.
    Dugdale J. The electrical properties of disordered metals. Cambridge: Cambridge University Press; 2005.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallisUSA

Personalised recommendations