Optical Frequency Rectification

  • Sachit Grover
  • Garret Moddel


Submicron antenna-coupled diodes, called optical rectennas, can directly rectify solar and thermal electromagnetic radiation, and function as detectors and power harvesting devices. The physics of a diode interacting with electromagnetic radiation at optical frequencies is not fully captured in its DC characteristics. We describe the operating principle of rectenna solar cells using a quantum approach and analyze the requirements for efficient rectification.

In prior work classical concepts from microwave rectenna theory have been applied to the analysis of photovoltaic power generation using these ultra-high-frequency rectifiers. Because of their high photon energy the interaction of petahertz-frequency waves with fast-responding diodes requires a semiclassical analysis. We use the theory of photon-assisted transport to derive the current–voltage [I(V)] characteristics of metal/insulator/metal (MIM) tunnel diodes under illumination. We show how power is generated in the second quadrant of the I(V) characteristic, derive solar cell parameters, and analyze the key variables that influence the performance under monochromatic radiation and to a first-order approximation.

The photon-assisted transport theory leads to several conclusions regarding the high-frequency characteristics of diodes. The semiclassical diode resistance and responsivity differ from their classical values. At optical frequencies, a diode even with a moderate forward-to-reverse current asymmetry exhibits high quantum efficiency.

An analysis is carried out to determine the requirements imposed by the operating frequency on the circuit parameters of rectennas. Diodes with low resistance and capacitance are required for the RC time constant of the rectenna to be smaller than the reciprocal of the operating frequency and to couple energy efficiently from the antenna.

Finally, we carry out a derivation that extends the semiclassical theory to the domain of non-tunneling based diodes, showing that the presented analysis is general and not restricted to the MIM diode.


Optical Frequency Coupling Efficiency Impedance Match Device Region Semiclassical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grover S. Diodes for optical rectennas. PhD Thesis, University of Colorado, Boulder; 2011.Google Scholar
  2. 2.
    Brown WC. Optimization of the efficiency and other properties of the rectenna element. 1976. p. 142–4.Google Scholar
  3. 3.
    Shinohara N, Matsumoto H. Experimental study of large rectenna array for microwave energy transmission. IEEE Trans Microw Theory Tech. 1998;46(3):261–8.CrossRefGoogle Scholar
  4. 4.
    Hagerty JA, Helmbrecht FB, McCalpin WH, Zane R, Popovic ZB. Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans Microw Theory Tech. 2004;52(3):1014–24.CrossRefGoogle Scholar
  5. 5.
    Singh P, Kaneria S, Anugonda VS, Chen HM, Wang XQ, et al. Prototype silicon micropower supply for sensors. IEEE Sens J. 2006;6(1):211–22.CrossRefGoogle Scholar
  6. 6.
    Fumeaux C, Herrmann W, Kneubühl FK, Rothuizen H. Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys Technol. 1998;39(3):123–83.CrossRefGoogle Scholar
  7. 7.
    Bailey RL. A proposed new concept for a solar-energy converter. J Eng Power. 1972;94(2):73–77.Google Scholar
  8. 8.
    Marks AM. Device for conversion of light power to electric power. US Patent No. 4445050; 1984.Google Scholar
  9. 9.
    Berland B. Photovoltaic technologies beyond the horizon: optical rectenna solar cell, NREL report no. SR-520-33263, final report; 2003.Google Scholar
  10. 10.
    Grover S, Joshi S, Moddel G. Theory of operation for rectenna solar cells. J Phys D. 2013.Google Scholar
  11. 11.
    Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovoltaics. 2011;1(1):78–83.CrossRefGoogle Scholar
  12. 12.
    Sedra AS, Smith KC. Microelectronic circuits. 4th ed. New York: Oxford University Press; 1997.Google Scholar
  13. 13.
    Yoo T, Chang K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans Microw Theory Tech. 1992;40(6):1259–66.CrossRefGoogle Scholar
  14. 14.
    Brown ER. A system-level analysis of Schottky diodes for incoherent THz imaging arrays. Solid State Electron. Mar 2004;48:2051–3.CrossRefGoogle Scholar
  15. 15.
    Kazemi H, Shinohara K, Nagy G, Ha W, Lail B, et al. First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky-diode detectors for room temperature infrared imaging. Infrared Technol Appl XXXIII. 2007;6542(1):65421.CrossRefGoogle Scholar
  16. 16.
    Hübers H-W, Schwaab GW, Röser HP. Video detection and mixing performance of GaAs Schottky-barrier diodes at 30 THz and comparison with metal-insulator-metal diodes, J Appl Phys. 1994;75(8):4243–8.CrossRefGoogle Scholar
  17. 17.
    Hartman TE. Tunneling of a wave packet. J Appl Phys. Dec 1962;33(12):3427–33.CrossRefGoogle Scholar
  18. 18.
    Nagae M. Response time of metal-insulator-metal tunnel junctions. Jpn J Appl Phys. 1972;11(11):1611–21.CrossRefGoogle Scholar
  19. 19.
    Rockwell S, Lim D, Bosco BA, Baker JH, Eliasson B, et al. Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications. In Radio frequency integrated circuits (RFIC) symposium, IEEE, Honolulu, HI; 2007. p. 171–4.Google Scholar
  20. 20.
    Sanchez A, Davis CF, Liu KC, Javan A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys. 1978;49(10):5270–7.CrossRefGoogle Scholar
  21. 21.
    Grover S, Dmitriyeva O, Estes MJ, Moddel G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans Nanotechnol. 2010;9(6):716–22.CrossRefGoogle Scholar
  22. 22.
    Eliasson BJ. Metal-insulator-metal diodes for solar energy conversion. PhD Thesis, University of Colorado at Boulder, Boulder; 2001.Google Scholar
  23. 23.
    Tien PK, Gordon JP. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys Rev. 1963;129(2):647–51.CrossRefGoogle Scholar
  24. 24.
    Tucker JR, Feldman MJ. Quantum detection at millimeter wavelengths. Rev Mod Phys. 1985;57(4):1055–113.CrossRefGoogle Scholar
  25. 25.
    Tucker JR. Quantum limited detection in tunnel junction mixers. IEEE J Quantum Electron. 1979;QE-15(11):1234–58.CrossRefGoogle Scholar
  26. 26.
    Michael Kale B. Electron tunneling devices in optics, Opt Eng. 1985;24(2):267–74.Google Scholar
  27. 27.
    Wilke I, Oppliger Y, Herrmann W, Kneubühl FK. Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation. Appl Phys Mater Sci Process. Apr 1994;58(4):329–41.CrossRefGoogle Scholar
  28. 28.
    Hobbs PC, Laibowitz RB, Libsch FR, LaBianca NC, Chiniwalla PP. Efficient waveguide-integrated tunnel junction detectors at 1.6 μm, Opt Express. 2007;15(25):16376–89.CrossRefGoogle Scholar
  29. 29.
    Estes MJ, Moddel G. Surface plasmon devices. US Patent 7,010,183; 2006.Google Scholar
  30. 30.
    Fal’ko V. Nonlinear properties of mesoscopic junctions under high-frequency field irradiation. Europhys Lett. 1989;8(8):785–9.CrossRefGoogle Scholar
  31. 31.
    Datta S. Steady-state transport in mesoscopic systems illuminated by alternating fields. Phys Rev B. 1992;45(23):13761–4.CrossRefGoogle Scholar
  32. 32.
    Liu J, Giordano N. Nonlinear response of a mesoscopic system. Phys B. 1990;165&166:279–80.CrossRefGoogle Scholar
  33. 33.
    Platero G, Aguado R. Photon-assisted transport in semiconductor nanostructures. Phys Rep. 2004;395(1–2):1–157.CrossRefGoogle Scholar
  34. 34.
    Kienle D, Vaidyanathan M, Léonard F. Self-consistent ac quantum transport using nonequilibrium Green functions. Phys Rev B. 2010;81:115455.CrossRefGoogle Scholar
  35. 35.
    Datta S, Anantram MP. Steady-state transport in mesoscopic systems illuminated by alternating fields. Phys Rev B. 1992;45(23):13761–4.CrossRefGoogle Scholar
  36. 36.
    Landauer R. Johnson-Nyquist noise derived from quantum mechanical transmission. Phys D. 1989;38:226–9.CrossRefGoogle Scholar
  37. 37.
    Ferry DK, Goodnick SM, Bird J. Transport in nanostructures. 2nd ed. Cambridge: Cambridge University Press; 2009.CrossRefGoogle Scholar
  38. 38.
    Datta S. Quantum transport: atom to transistor. Cambridge: Cambridge University Press; 2005.CrossRefGoogle Scholar
  39. 39.
    Pedersen MH, Büttiker M. Scattering theory of photon-assisted electron transport. Phys Rev B. 1998;58(19):12993–3006.CrossRefGoogle Scholar
  40. 40.
    Dagenais M, Choi K, Yesilkoy F, Chryssis AN, Peckerar MC. Solar spectrum rectification using nano-antennas and tunneling diodes. Proc SPIE. 2010;7605:76050E–1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.National Center for Photovoltaics, National Renewable Energy LaboratoryGoldenUSA
  2. 2.Department of Electrical, Computer, & Energy EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations