Techniques for Roll-to-Roll Manufacturing of Flexible Rectenna Solar Cells

  • W. Dennis Slafer


Rectenna solar cells (RSCs) are composed of arrays of antenna elements with nanoscale features and corresponding THZ-frequency diodes that convert incident radiation into electricity. Given that semiconductor fabrication facilities today have the capability of producing such devices, it may seem that, with ongoing efforts to improve nanoantenna device physics, RSCs should eventually be commercially available. So what’s the problem?


Atomic Layer Deposition Frequency Selective Surface Nanoimprint Lithography Mask Level Photoresist Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chou S, Krauss P, Renstrom P. Imprint lithography with 25-nanometer resolution. Science. 1996;272(5258):85–7.CrossRefGoogle Scholar
  2. 2.
    Xia Y, Whitesides G. Soft lithography. Angew Chem Int Ed Engl. 1998;37(5):551–75.CrossRefGoogle Scholar
  3. 3.
    Rogers J, Nuzzo R. Recent progress in soft lithography. Mater Today. 2005;8(2):50–6. doi: 10.1016/S1369-7021(05)00702-9.CrossRefGoogle Scholar
  4. 4.
    LaPedus M. SPIE: Intel to extend immersion to 11-nm. EE Times. 2010.
  5. 5.
    Vogler D. Intel product launch event yields more insight into its manufacturing strategy, solid state technology. 2007.
  6. 6.
    Fritze M, Tyrrell B, Astolfi D, Lambert R, Yost D, Forte A, Cann S, Wheeler B. Subwavelength optical lithography with phase-shift photomasks. Lincoln Lab J. 2003;14(2):237–50.Google Scholar
  7. 7.
    Bjorkholm J. EUV lithography—the successor to optical lithography? Intel Technology Journal Q3’98. 1998.
  8. 8.
    Lammers D. EUV mask cleaning presents economic challenges, semiconductor manufacturing & design. 2011.
  9. 9.
    Suntola T, Antson J. Method for producing compound thin films. U.S. Patent 4,058,430; 1977.Google Scholar
  10. 10.
    Suntola T, Pakkala A, Lindfors S. Apparatus for performing growth of compound thin films. U.S. Patent 4,389,973; 1983.Google Scholar
  11. 11.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. Dip pen nanolithography. Science. 1999;283:661–3.CrossRefGoogle Scholar
  12. 12.
    IBM Press Release, 11 June 2002. IBM’s ‘Millipede’ project demonstrates remarkable trillion-bit data storage density.
  13. 13.
    Commercial machine vendors include Molecular Imprints (, Nanonex (, and Obducat (
  14. 14.
    Tan H, Gilbertson A, Chou S. Roller nanoimprint lithography. J Vac Sci Tech B. 1998;16(6):3926–8.CrossRefGoogle Scholar
  15. 15.
    Satyanarayana S, Karnik R, Majumdar A. Stamp-and-stick room-temperature bonding technique for microdevices. J Microelectromech Syst. 2005;14(2):392–9.CrossRefGoogle Scholar
  16. 16.
    Di Bari G. Nickel electroforming processes and applications. INCO Ltd. 1991.
  17. 17.
    An earlier version of this process that predated optical disc manufacturing was in the stamping of vinyl LP discs in the 1940’s.Google Scholar
  18. 18.
    Madou M. Fundamentals of microfabrication: the science of miniaturization. 2nd ed. Boca Raton: CRC Press; 2002.Google Scholar
  19. 19.
    Compact Disc manufacturing. Wikipedia.
  20. 20.
    Physical format specifications for BD-ROM. 5th ed. Blu-ray Disc Association; 2007.
  21. 21.
  22. 22.
  23. 23.
    Slafer W, Kime M, Monen R, Horton W, Wan L. Continuous web manufacturing of thin coversheet optical media. SPIE Proceed. 1992;1663:324–35.CrossRefGoogle Scholar
  24. 24.
    Slafer W. Pre-formatted linear optical data storage medium. US Patent 7,369,483; 2008.Google Scholar
  25. 25.
    Sammakia B, Poliks M, Curtin M. Towards low-cost, mass-produced ubiquitous electronics. The Center for Advanced Microelectronics Manufacturing (CAMM). 2007.
  26. 26.
    Swartz J. Flexible displays bend what’s possible for computers. USA Today. 2012. Accessed 5April 2012.
  27. 27.
    Slafer W, Walworth V, Holland A, Cowan J. Investigation of arrayed silver halide grains. J Imag Sci. 1987;31:117–25.Google Scholar
  28. 28.
  29. 29.
  30. 30.
    Slafer W, Kreismanis V, Praino R. Roll-to-roll patterning of metallic layers. In: Flexible electronics & displays conference. Phoenix, AZ, 2–6 Feb 2009.Google Scholar
  31. 31.
    HP Sail and other flex electronics (see FlexTech Alliance) Zhao L, et al. Novel Method for fabricating flexible active matrix organic light emitting diode (AMOLED) displays. HP Laboratories, HPL-2011-152, 21 Sept 2011.Google Scholar
  32. 32.
    Benton S, Bove M. Holographic imaging. NJ: Wiley; 2008.CrossRefGoogle Scholar
  33. 33.
    Toal V. Introduction to holography. Boca Raton, FL: CRC Press; 2012.Google Scholar
  34. 34.
    Hudson P. New hologram technology adds anti-counterfeiting features. Secure ID news. 2009.
  35. 35.
    The Evolutionary Use of Holograms on Banknotes. Reconnaissance International Holography. 2010.
  36. 36.
    Haines K. Development of Embossed Holograms. Proc SPIE. 1996;2652:45–52.CrossRefGoogle Scholar
  37. 37.
    Land E. An introduction to polavision. Photogr Sci Eng. 1977;21(5):225–36.Google Scholar
  38. 38.
    Lefkowitz L. Polachrome 35mm instant slide system: a user’s manual. Boston: Focal Press; 1985.Google Scholar
  39. 39.
    Hirsch R. Exploring colour photography: a complete guide. London: Laurence King Publishing; 2004.Google Scholar
  40. 40.
  41. 41.
    Taussig C, et al. Method of forming at least one thin film device. US Patent 7,202,179; 2007.Google Scholar
  42. 42.
    Tassin J, Vigny M, Veyrat D. Biaxial stretching of PET films: a molecular description. In: Macromolecular symposia, Wiley, Vol. 147(1). p. 209–20; Dec 1999.Google Scholar
  43. 43.
  44. 44.
    Schvartzman M, Wind S. Robust pattern transfer of nanoimprinted features for sub-5 nm fabrication. Nano Lett. 2009;9(10):3629–34.CrossRefGoogle Scholar
  45. 45.
    Ahn S, Guo L. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano. 2009;3(8):2304–10.CrossRefGoogle Scholar
  46. 46.
    Uni-Solar Flexible Photovoltaics. 2009.
  47. 47.
    Corning Gorilla Glass Technical Materials. Accessed 20 Dec 2012.
  48. 48.
  49. 49.
    Slafer D, Dalal V. Novel R2R manufacturable photonic-enhanced thin film solar cells. 2012. National Renewable Energy Laboratory, Subcontract Report NREL/SR-5200-54324.Google Scholar
  50. 50.
    Kotter D, Slafer D, Novack S, Pinhero P. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors. J Sol Energ Eng. 2010;132:011014–1.CrossRefGoogle Scholar
  51. 51.
    Boreman G Infrared antennas & frequency selective surfaces. CREOL, The College of Optics & Photonics, University of Central Florida Orlando, FL, 29 Apr 2011.
  52. 52.
    Shelton D, Tharp J, Zummo G, Folks W, Boreman G. Fabrication of periodic microstructures on flexible polyimide membranes. J Vac Sci Tech B. 2007;25:1827.CrossRefGoogle Scholar
  53. 53.
    Srigengan V, Mitchell N, Gamble H. ICP etching and RF MEMS fabrication. Northern Ireland: Semiconductor Research Centre, Queen’s University Belfast, 14 Dec 2004.
  54. 54.
    Physical & Thermal Properties–DuPont Teijin Films. DuPont Teijin Films, 222367D, June 2003.
  55. 55.
    Comparison of properties–PEN Film–Teijin DuPont Films.
  56. 56.
  57. 57.
    Levy D. Atmospheric device processing by spatial atomic layer deposition. In: materials research society symposium D. Accessed 2 Dec 2010.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.MicroContinuum, Inc.CambridgeUSA

Personalised recommendations