Overview of Nanoantennas for Solar Rectennas

  • Ahmed M. A. Sabaawi
  • Charalampos C. Tsimenidis
  • Bayan S. Sharif


This chapter highlights the history of optical and infrared antennas for solar rectennas and mentions the important contributions made in this field. Moreover, it demonstrates the versatility of solar rectennas over the traditional solar cells. The structure and the operation theory of solar rectennas have also been presented in this chapter. The main part of this chapter focuses on the antenna types utilized in solar rectenna systems such as: dipole, bowtie and spiral nanoantennas in both single and array forms. A comparison between these types has been made based on the captured electric field and the area under curve which were computed by the aid of numerical analysis.


Area Under Curve Perfect Matched Layer Resonant Wavelength Dipole Antenna Array Factor 


  1. 1.
    Kotter DK, Novack SD, Slafer WD, Pinhero PJ. Theory and manufacturing processes of solar Nano-antenna electromagnetic collectors. ASME J Sol Energy. 2010;132:011014.CrossRefGoogle Scholar
  2. 2.
    Global Climate and Energy Project. An Assessment of Solar Energy Conversion Technologies and Research Opportunities. Technical Assessment Report, GCEP Energy Assessment Analysis, Summer 2006. http://gcep.stanford.edu
  3. 3.
    Insulating Coatings Corporation (ASTEC): http://www.icc-astec.com/faq/astec-faq.pdf (2007).
  4. 4.
    Biagioni P, Huang JS, Hecht B. Nanoantennas for visible and infrared radiation. Rep Prog Phys. 2012;75:024402(40).CrossRefGoogle Scholar
  5. 5.
    Brown WC. The history of power transmission by radio waves. IEEE Trans Microwave Theory Tech. 1984;MTT-32:1230–42.CrossRefGoogle Scholar
  6. 6.
    Corkish R, Green MA, Puzzer T. Solar energy collection by antennas. Sol Energy. 2002;73(6):395–401.CrossRefGoogle Scholar
  7. 7.
    Marks AM. Device for conversion of light power to electric power. USA Patent no. 4,445,050, 1984.Google Scholar
  8. 8.
    Lin GH, Abdu R, Bockris JOM. Investigation of resonance light absorption and rectification by sub nanostructures. J Appl Phys. 1996;80:565.CrossRefGoogle Scholar
  9. 9.
    Berland B. Photovoltaic technologies beyond the horizon: optical rectenna solar cell. Final report, NREL/SR-520-33263, National Renewable Energy Laboratory (NREL), 2003.Google Scholar
  10. 10.
    Midrio M, Romagnoli M, Boscolo S, De Angelis C, Locatelli A, Modotto D, Capobianco A. Flared monopole antennas for 10-μm radiation. IEEE J Quantum Electron. 2011;47(1):84–91.Google Scholar
  11. 11.
    Karam NH, King RR, Cavicchi BT, Krut DD, Ermer JH, Haddad M, Cai L, Joslin DE, Takahashi M, Eldredge JW, Nishikawa WT, Lillington DR, Keyes BM, Ahrenkiel RK. Development and characterization of high-efficiency Ga0. 5In0. 5P/GaAs/Ge dual- and triple-junction solar cells. IEEE Trans Electron Devices. 1999;46(10):2116–25.Google Scholar
  12. 12.
    Balanis C. Advanced engineering electromagnetics. New York: Wiley; 1989.Google Scholar
  13. 13.
    De Angelis C, Locatelli A, Modotto D, Boscolo S, Midrio M, Sacchetto F, Capobianco AD, Pigozzo FM, Someda CG. Extending antenna theory to the optical domain. European Microwave Conference (EuMC), Roma, 2009.Google Scholar
  14. 14.
    Gonzalez FJ, Alda J, Simon J, Ginn J, Boreman G. The effect of metal dispersion on the resonance of antennas at infrared frequencies. Infrared Phys Tech. 2009;52(1):48–51.CrossRefGoogle Scholar
  15. 15.
    Johnson PB, Christy RW. Optical constants of the noble metals. Phys. Rev. B. 1972;6:4370–9.CrossRefGoogle Scholar
  16. 16.
    Hanson GW. On the applicability of the surface impedance integral equation for optical and near infrared copper dipole antennas. IEEE Trans Antennas Propag. 2006;54:3677–85.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ordal MA, Bell RJ, Alexander Jr RW, Long LL, Querry MR. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Otp. 1985;24:4493.CrossRefGoogle Scholar
  18. 18.
    Nahas JJ. Modeling and computer simulation of a microwave to dc energy conversion element. IEEE Trans Microwave Theory Tech. 1975;23(12):1030–5.CrossRefGoogle Scholar
  19. 19.
    Fumeaux C, Herrmann W, Rothuizen H, De Natale P, Kneubühl FK. Mixing of 30 THz laser radiation with nanometer thin-film Ni–NiO–Ni diodes and integrated bow-tie antennas. Appl Phys B. 1996;63:135–40.Google Scholar
  20. 20.
    Grover S, Moddel G. Applicability of metal/insulator/metal (mim) diodes to solar rectennas. IEEE J Photovoltaics. 2011;1(1):78–83.CrossRefGoogle Scholar
  21. 21.
    Bean JA, Weeks A, Boreman GD. Performance optimization of antenna-coupled tunnel diode infrared detectors. IEEE J Quantum Electron. 2011;47(1):126–35.CrossRefGoogle Scholar
  22. 22.
    Fumeaux C, Herrmann W, Kneubühl FK, Rothuizen H. Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys Technol. 1998;39:123–83.Google Scholar
  23. 23.
    Sabaawi AMA, Tsimenidis CC, Sharif BS. Infra-red nano-antennas for solar energy collection. Loughborough Antennas and Propagation Conference (LAPC), pp.1–4, 14–15, 2011.Google Scholar
  24. 24.
    COMSOL Multiphysics 3.4, COMSOL Inc. (http://www.comsol.com).
  25. 25.
    Jin J. The finite element method in electromagnetics. 2nd ed. New York: Wiley; 2002.MATHGoogle Scholar
  26. 26.
    Balanis CA. Antenna theory: analysis and design. New Jersey: Wiley; 2005.Google Scholar
  27. 27.
    Hanson GW. Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans Antennas Propag. 2005;53(11):3426–35.CrossRefGoogle Scholar
  28. 28.
    Cubukcu E, Yu N, Smythe EJ, Diehl L, Crozier K, Capasso F. Plasmonic laser antennas and related devices. IEEE J Sel Topics Quantum Electron. 2008;14(6):1448–61.CrossRefGoogle Scholar
  29. 29.
    Ding W, Bachelot R, Kostcheev S, Royer P, de Lamaestre RE. Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J Appl Phys. 2010;108:124–314.Google Scholar
  30. 30.
    Hanley JA, Mcneil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.Google Scholar
  31. 31.
    Atapattu S, Tellambura C, Jiang H. Analysis of area under the ROC curve of energy detection. IEEE Trans Wireless Commun. 2010;9(3):1216–25.CrossRefGoogle Scholar
  32. 32.
    MATLAB v7.10.0, Product Help.Google Scholar
  33. 33.
    Gonzalez FJ, Ilic B, Alda J, Boreman GD. Antenna-coupled infrared detectors for imaging applications. IEEE J Sel Topics Quantum Electron. 2005;11(1):117–20.Google Scholar
  34. 34.
    Sabaawi AMA, Tsimenidis CC, Sharif BS. Planar Bowtie Nanoarray for THz Energy Detection. IEEE Trans on Terahertz Sci and Tech. 2013.Google Scholar
  35. 35.
    Sabaawi AMA, Tsimenidis CC, Sharif BS. Infra-red Spiral nano-antennas. Loughborough Antennas and Propagation Conference (LAPC), pp. 1–4, 12–13, 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ahmed M. A. Sabaawi
    • 1
  • Charalampos C. Tsimenidis
    • 1
  • Bayan S. Sharif
    • 1
    • 2
  1. 1.School of Electrical and Electronic EngineeringNewcastle UniversityNewcastle upon TyneUK
  2. 2.Department of Electrical and Computer EngineeringKhalifa UniversityKhalifaUAE

Personalised recommendations