Geometric Diodes for Optical Rectennas

  • Zixu Zhu
  • Saumil Joshi
  • Sachit Grover
  • Garret Moddel
Chapter

Abstract

A new diode called a geometric diode rectifies based on geometric asymmetry of a conducting thin film. The planar structure of the geometric diode provides a low RC time constant (on the order of 10−15 s) that is required for rectenna operation at optical frequencies and a low impedance for efficient power transfer from the antenna. Fabricated graphene geometric diodes show asymmetric DC current–voltage characteristics consistent with Monte Carlo simulations for the devices. Coupled to an antenna to form a rectenna, we demonstrated rectification for 28 THz radiation. The geometric diode rectenna system detectivity is in theory 10 times higher than for a metal–insulator–metal diode operating at 28 THz. Applications for this diode include terahertz-wave and optical detection, ultrahigh speed electronics, and optical power conversion.

Keywords

SiO2 Microwave Mercury 

Notes

Acknowledgements

We gratefully acknowledge assistance in device preparation from Kendra Krueger and David Doroski. This work was carried out under a contract from Abengoa Solar, with initial support from Hub Lab. Device processing was carried out in part at the Colorado Nanofabrication Laboratory and in part at the Cornell NanoScale Science and Technology Facility, both members of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). We also thank Jonathan Alden in professor P.L. McEuen’s group in Cornell University for providing the CVD graphene sample.

References

  1. 1.
    Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovolt. 2011;1(1):78–83.CrossRefGoogle Scholar
  2. 2.
    Zhu Z, Grover S, Krueger K, Moddel G. Optical rectenna solar cells using graphene geometric diodes. In: IEEE photovoltaic specialists conference; 2011. p. 002120–2.Google Scholar
  3. 3.
    Zhu Z, Joshi S, Grover S, Moddel G. Graphene geometric diodes for terahertz rectennas. J Phys D Appl Phys. 2013;46:185101.Google Scholar
  4. 4.
    Moddel G, Zhu Z, Grover S, Joshi S. Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 2012;152:1842–5.CrossRefGoogle Scholar
  5. 5.
    Grover S. Diodes for optical rectennas. PhD thesis, University of Colorado, Boulder; 2011. p. 99–101.Google Scholar
  6. 6.
    Datta S. Steady-state transport in mesoscopic systems illuminated by alternating fields. Phys Rev B. 1992;45(23):13761–4.CrossRefGoogle Scholar
  7. 7.
    Song AM. Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry. Appl Phys A. 2002;75:229–35.CrossRefGoogle Scholar
  8. 8.
    Ashcroft NW, Mermin ND. Solid state physics. New York: Holt, Rinehart and Winston; 1976. p. 2–11.Google Scholar
  9. 9.
    Durkan C. Current at the nanoscale: an introduction to nanoelectronics. 1st ed. London: Imperial College Press; 2007. p. 107.Google Scholar
  10. 10.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–62.CrossRefGoogle Scholar
  11. 11.
    Murali Y, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett. 2009;94:243114.CrossRefGoogle Scholar
  12. 12.
    Nayfeh OM. Radio-frequency transistors using chemical-vapor-deposited monolayer graphene: performance, doping, and transport effects. IEEE Trans Electron Devices. 2011;58(9):2847–53.CrossRefGoogle Scholar
  13. 13.
    Joshi P, Romero HE, Neal AT, Toutam VK, Tadigadapa SA. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. J Phys Condens Matter. 2010;22:334214.CrossRefGoogle Scholar
  14. 14.
    Dorgan VE, Bae M-H, Pop E. Mobility and saturation velocity in graphene on SiO2. Appl Phys Lett. 2010;97:082112.CrossRefGoogle Scholar
  15. 15.
    Weiss MD, Eliasson BJ, Moddel G. Terahertz device integrated antenna for use in resonant and non-resonant modes and method. Patent No. 6664562; 2003.Google Scholar
  16. 16.
    González FJ, Boreman GD. Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys Technol. 2005;46(5):418–28.CrossRefGoogle Scholar
  17. 17.
    Williams JR, DiCarlo L, Marcus CM. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science. 2007;317:638–41.CrossRefGoogle Scholar
  18. 18.
    Sanchez A, Davis CFJ, Liu KC, Javan A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys. 1978;49:5270.CrossRefGoogle Scholar
  19. 19.
    Dragoman D, Dragoman M. Geometrically induced rectification in two-dimensional ballistic nanodevices. J Phys D Appl Phys. 2013;46:055306.CrossRefGoogle Scholar
  20. 20.
    Vendik OG, Zubko SP, Nikol’skii MA. Modeling and calculation of the capacitance of a planar capacitor containing a ferroelectric thin film. Tech Phys. 1999;44(4):349–55.CrossRefGoogle Scholar
  21. 21.
    Datta S. Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 2000;28(4):253–78.CrossRefGoogle Scholar
  22. 22.
    Datta S. The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction. In: Electron devices meeting, 2002. IEDM‘02. International; 2002.Google Scholar
  23. 23.
    Reich S, Maultzsch J, Thomsen C, Ordejon P. Tight-binding description of graphene. Phys Rev B. 2002;66:035412.CrossRefGoogle Scholar
  24. 24.
    Wu Y, Childs PA. Conductance of graphene nanoribbon junctions and the tight binding model. Nanoscale Res Lett. 2011;6(62):1–5.MATHGoogle Scholar
  25. 25.
    Rogalski A. Infrared detectors: status and trends. Prog Quant Electron. 2003;27(2–3):59–210.CrossRefGoogle Scholar
  26. 26.
    Rogalski A. Infrared detectors. Amsterdam: Gotdon and Breach Science Publishers; 2000. p. 776–840.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zixu Zhu
    • 1
  • Saumil Joshi
    • 1
  • Sachit Grover
    • 2
  • Garret Moddel
    • 1
  1. 1.Department of Electrical, Computer, and Energy EngineeringUniversity of ColoradoBoulderUSA
  2. 2.National Center for Photovoltaics, National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations