Will Rectenna Solar Cells Be Practical?

Abstract

Optical rectennas are an attractive technology for high-efficiency, low-cost solar cells if several technological issues can be addressed. These devices combine submicron antennas with ultra-high speed diodes to rectify incident radiation. Visible light frequency operation requires a quantum approach to analyze the rectification process and design the devices. The small coherence area for sunlight limits the power per rectenna, which affects the conversion efficiency. In assessing the broadband ultimate efficiency obtainable from rectenna solar cells it turns out that operating voltage plays the same role that band gap energy plays in conventional solar cells, leading to a single cell limit of 44 %. Parallel plate diodes cannot provide the 0.1 fs RC time constant that is required to rectify visible light frequencies, and so other potential solutions such as traveling-wave diodes, sharp-tip diodes, or geometric diodes are required. Waste heat harvesting and thermophotovoltaics using optical rectennas would relax the RC constraints because the infrared frequencies are lower than those for visible light, but with substantial coherence impediments. With innovation and careful development rectenna solar cells have the potential to provide an exciting new photovoltaics technology.

References

  1. 1.
    Trivich D, Flinn PA. Maximum efficiency of solar energy conversion by quantum processes. In: Duffie JA, Daniels F, editors. Solar energy research. Madison: University of Wisconsin Press; 1955.Google Scholar
  2. 2.
    Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32:510–9.CrossRefGoogle Scholar
  3. 3.
    Bailey RL. A proposed new concept for a solar-energy converter. J Eng Power. 1972;94:73–77.Google Scholar
  4. 4.
    Eliasson BJ. Metal-insulator-metal diodes for solar energy conversion. PhD Thesis. University of Colorado at Boulder. 2001.Google Scholar
  5. 5.
    Eliasson BJ, Moddel G. Metal-oxide electron tunneling device for solar energy conversion. US Patent 6,534,784. 2003.Google Scholar
  6. 6.
    Berland B. Photovoltaic technologies beyond the horizon: optical rectenna solar cell. Final report. NREL Report No. SR-520-33263; 2003.Google Scholar
  7. 7.
    Mashaal H, Gordon JM. Fundamental bounds for antenna harvesting of sunlight. Opt Lett. 2011;36:900–2.CrossRefGoogle Scholar
  8. 8.
    Grover S, Joshi S, Moddel G. Quantum theory of operation for rectenna solar cells. J Phys D: Appl Phys. 2013;46:135106.CrossRefGoogle Scholar
  9. 9.
    Tien PK, Gordon JP. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys Rev. 1963;129(2):647–51.CrossRefGoogle Scholar
  10. 10.
    Tucker JR. Quantum limited detection in tunnel junction mixers. IEEE J Quantum Electron. 1979;QE-15(11):1234–58.CrossRefGoogle Scholar
  11. 11.
    Heiblum M. Tunneling hot electron transfer amplifiers (THETA): amplifiers operating up to the infrared. Solid State Electron. 1981;24:343–66.CrossRefGoogle Scholar
  12. 12.
    Schnupp P. The tunneling time of an electtron and the image force. Thin Solid Films. 1968;2:177–83.CrossRefGoogle Scholar
  13. 13.
    de Arquer FPG, Volski V, Verellen N, Vandenbosch GAE, Moshchalkov VV. Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect. IEEE Trans Antennas Propag. 2011;59:3144–53.CrossRefGoogle Scholar
  14. 14.
    Kocakarin I, Yegin K. Glass superstrate nanoantennas for infrared energy harvesting applications. Int J Antennas Propag. 2013;2013:245960.Google Scholar
  15. 15.
    Sanchez A, Davis CF, Liu KC, Javan A. The MOM tunneling diode: theoretical estimate of its performance at microwave and infrared frequencies. J Appl Phys. 1978;49(10):5270–7.CrossRefGoogle Scholar
  16. 16.
    Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovolt. 2011;1(1):78–83.CrossRefGoogle Scholar
  17. 17.
    Joshi S, Moddel G. Efficiency limits of rectenna solar cells: theory of broadband photon-assisted tunneling. Appl Phys Lett. 2013;102:083901.CrossRefGoogle Scholar
  18. 18.
    Fumeaux C, Alda J, Boreman GD. Lithographic antennas at visible frequencies. Opt Lett. 1999;24:1629–31.CrossRefGoogle Scholar
  19. 19.
    Alimardani N, Cowell EW, Wagner JF, Conley JF, Evans DR, Chin M, Kilpatrick SJ, Dubey M. Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J Vac Sci Technol A. 2012;30:01A113.CrossRefGoogle Scholar
  20. 20.
    Periasamy P, Berry JJ, Dameron AA, Bergeson JD, Ginley DS, O’Hayre OP, Parilla PA. Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv Mater. 2011;23:3080–5.CrossRefGoogle Scholar
  21. 21.
    Grover S, Moddel G. Engineering the current–voltage characterisitcs of metal/insulator/metal diodes using double insulator tunnel barriers. Solid State Electron. 2012;67(1):94–9.CrossRefGoogle Scholar
  22. 22.
    Maraghechi P, Foroughi-Abari A, Cadien K, Elezzabi AY. Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl Phys Lett. 2011;99:253503.CrossRefGoogle Scholar
  23. 23.
    Estes MJ, Moddel G. Surface plasmon devices. US Patent 7,010,183. 2006.Google Scholar
  24. 24.
    Hobbs PC, Laibowitz RB, Libsch FR, LaBianca NC, Chiniwalla PP. Efficient waveguide-integrated tunnel junction detectors at 1.6 μm. Opt Express. 2007;15(25):16376–89.CrossRefGoogle Scholar
  25. 25.
    Grover S, Dmitriyeva O, Estes MJ, Moddel G. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans Nanotechnol. 2010;9(6):716–22.CrossRefGoogle Scholar
  26. 26.
    Miskovsky NM, Cutler PH, Mayer A, Weiss BL, Willis B, Sullivan TE, Lerner PB. Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: a new approach. J Nanotechnol. 2012;2012:512379.Google Scholar
  27. 27.
    Wang F, Melosh NA. Plasmonic energy collection through hot carrier extraction. Nano Lett. 2011;11:5426–30.CrossRefGoogle Scholar
  28. 28.
    White TP, Catchpole KR. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl Phys Lett. 2012;101:073905.CrossRefGoogle Scholar
  29. 29.
    Alavirad M, Mousavi SS, Roy L, Berini P. Schottky-contact plasmonic dipole rectenna concept for biosensing. Opt Express. 2013;21(4):4328–47.CrossRefGoogle Scholar
  30. 30.
    Zhu Z, Joshi S, Grover S, Moddel G. Graphene geometric diodes for terahertz rectennas. J Phys Appl Phys. 2013;46:185101.Google Scholar
  31. 31.
    Moddel G, Zhu Z, Grover S, Joshi S. Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 2012;152:1842–5.CrossRefGoogle Scholar
  32. 32.
    Balocco C, Kasjoo SR, Lu XF, Zhang LQ, Alimi Y, Winnerl S, Song AM. Room-temperature operation of a unipolar nanodiode at terahertz frequencies. Appl Phys Lett. 2011;98:223501.CrossRefGoogle Scholar
  33. 33.
    Corkish R, Green MA, Puzzer T. Solar energy collection by antennas. Solar Energy. 2002;73:395–401.CrossRefGoogle Scholar
  34. 34.
    Landsberg PT, Tonge G. Thermodynamics of the conversion of diluted radiation. J Phys A: Math Gen. 1979;12:551–62.CrossRefGoogle Scholar
  35. 35.
    Moddel G. Fractional bandwidth normalization for optical spectra with application to the solar blackbody spectrum. Appl Optics. 2001;40:413–6.CrossRefGoogle Scholar
  36. 36.
    Grover S. Diodes for optical rectennas. PhD Thesis. University of Colorado at Boulder. 2011.Google Scholar
  37. 37.
    Harder NP, Würfel P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond Sci Technol. 2003;18:S151–7.CrossRefGoogle Scholar
  38. 38.
    Yoo T, Chang K. Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans Microw Theory Tech. 1992;40(6):1259–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Electrical, Computer, & Energy EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations