Skip to main content

Hematogenous Dissemination

  • Chapter
  • First Online:
Book cover Experimental and Clinical Metastasis

Abstract

The changes in the ECM composition induced by the invading tumor cells have been discussed in previous chapters. We now focus on the following step of the metastatic cascade, the access of malignant cells to the host’s bloodstream. The importance of understanding this early step of disease progression is crucial because most cancer patients die from metastases rather than from their primary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Cancer Society (2009) Atlanta, GA

    Google Scholar 

  • Apte RS, Mayhew E, Niederkorn JY (1997) Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest Ophthalmol Vis Sci 38:1277–1282

    PubMed  CAS  Google Scholar 

  • Blood CH, Zetter BR (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim Biophys Acta 1032:89–118

    PubMed  CAS  Google Scholar 

  • Bono AV et al (2002) Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis 5:123–127

    Article  PubMed  CAS  Google Scholar 

  • Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 35:512–516

    PubMed  CAS  Google Scholar 

  • Cohen MM Jr, Judah Folkman MD (2009) 1933–2008: father of angiogenesis. J Craniofac Surg 20(Suppl 1):590–591

    Article  PubMed  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  • Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072

    PubMed  CAS  Google Scholar 

  • Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed  CAS  Google Scholar 

  • Erpenbeck L, Schon MP (2010) Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 115:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Estrov Z et al (1995) Elevated plasma thrombopoietic activity in patients with metastatic cancer-related thrombocytosis. Am J Med 98:551–558

    Article  PubMed  CAS  Google Scholar 

  • Ewing J (1928) Neoplastic Diseases. Saunders, Philadelphia

    Google Scholar 

  • Fidler IJ (1970) Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2’-deoxyuridine. J Natl Cancer Inst 45:773–782

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Poste G (2008) The “seed and soil” hypothesis revisited. Lancet Oncol 9:808

    Article  PubMed  Google Scholar 

  • Fidler IJ, Talmadge JE (1986) Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 46:5167–5171

    PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Kalluri R (2004) Cancer without disease. Nature 427:787

    Article  PubMed  CAS  Google Scholar 

  • Fox RI, Luppi M, Kang HI, Ablshi D, Josephs S (1993) Detection of high levels of human herpes virus-6 DNA in a lymphoma of a patient with Sjogren’s syndrome. J Rheumatol 20:764–765

    PubMed  CAS  Google Scholar 

  • Gross JL, Moscatelli D, Jaffe EA, Rifkin DB (1982) Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95:974–981

    Article  PubMed  CAS  Google Scholar 

  • Gupta GP et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    Article  PubMed  CAS  Google Scholar 

  • Hamada J, Cavanaugh PG, Lotan O, Nicolson GL (1992) Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis. Br J Cancer 66:349–354

    Article  PubMed  CAS  Google Scholar 

  • Hanna N (1982) Inhibition of experimental tumor metastasis by selective activation of natural killer cells. Cancer Res 42:1337–1342

    PubMed  CAS  Google Scholar 

  • Hernandez E, Lavine M, Dunton CJ, Gracely E, Parker J (1992) Poor prognosis associated with thrombocytosis in patients with cervical cancer. Cancer 69:2975–2977

    Article  PubMed  CAS  Google Scholar 

  • Honn KV et al (1994) Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Res 54:565–574

    PubMed  CAS  Google Scholar 

  • Ikeda M et al (2002) Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol 9:287–291

    Article  PubMed  Google Scholar 

  • Kawaguchi T, Nakamura K (1986) Analysis of the lodgement and extravasation of tumor cells in experimental models of hematogenous metastasis. Cancer Metastasis Rev 5:77–94

    Article  PubMed  CAS  Google Scholar 

  • Kusama T et al (1995) Enhancement of in vitro tumor-cell transcellular migration by tumor-cell-secreted endothelial-cell-retraction factor. Int J Cancer 63:112–118

    Article  PubMed  CAS  Google Scholar 

  • Lapis K, Paku S, Liotta LA (1988) Endothelialization of embolized tumor cells during metastasis formation. Clin Exp Metastasis 6:73–89

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Kleinerman J, Saidel GM (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 34:997–1004

    PubMed  CAS  Google Scholar 

  • Machado EA, Gerard DA, Mitchell JR, Lozzio BB, Lozzio CB (1982) Arrest and extravasation of neoplastic cells. An electron microscopy study of serial sections at sequential stages. Virchows Arch A Pathol Anat Histol 396:73–89

    Article  PubMed  CAS  Google Scholar 

  • Maghazachi AA (2000) Intracellular signaling events at the leading edge of migrating cells. Int J Biochem Cell Biol 32:931–943

    Article  PubMed  CAS  Google Scholar 

  • Mendoza M, Khanna C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  PubMed  CAS  Google Scholar 

  • Nicosia RF, Tchao R, Leighton J (1986) Interactions between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin Exp Metastasis 4:91–104

    Article  PubMed  CAS  Google Scholar 

  • Padua D et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    Article  PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  • Paku S (1998) Current concepts of tumor-induced angiogenesis. Pathol Oncol Res 4:62–75

    Article  PubMed  CAS  Google Scholar 

  • Paku S, Timar J, Lapis K (1990) Ultrastructure of invasion in different tissue types by Lewis lung tumour variants. Virchows Arch A Pathol Anat Histopathol 417:435–442

    Article  PubMed  CAS  Google Scholar 

  • Paku S, Dome B, Toth R, Timar J (2000) Organ-specificity of the extravasation process: an ultrastructural study. Clin Exp Metastasis 18:481–492

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JS et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185

    Article  PubMed  CAS  Google Scholar 

  • Poste G, Nicolson GL (1980) Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci U S A 77:399–403

    Article  PubMed  CAS  Google Scholar 

  • Proctor JW, Auclair BG, Stokowski L, Mansell WA, Shibata H (1977) Comparison of effect of BCG, glucan and levamisole on B16 melanoma metastases. Eur J Cancer 13:115–122

    Article  PubMed  CAS  Google Scholar 

  • Rak JW, Hegmann EJ, Lu C, Kerbel RS (1994) Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol 159:245–255

    Article  PubMed  CAS  Google Scholar 

  • Repp AC, Mayhew ES, Apte S, Niederkorn JY (2000) Human uveal melanoma cells produce macrophage migration-inhibitory factor to prevent lysis by NK cells. J Immunol 165:710–715

    PubMed  CAS  Google Scholar 

  • Rickles FR, Falanga A (2001) Molecular basis for the relationship between thrombosis and cancer. Thromb Res 102:V215–224

    Article  PubMed  CAS  Google Scholar 

  • Rizzo V, DeFouw DO (1996) Capillary sprouts restrict macromolecular extravasation during normal angiogenesis in the chick chorioallantoic membrane. Microvasc Res 52:47–57

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Rajotte D (2000) An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 18:813–827

    Article  PubMed  CAS  Google Scholar 

  • Scholz HS et al (2000) Preoperative thrombocytosis is an independent prognostic factor in stage III and IV endometrial cancer. Anticancer Res 20:3983–3985

    PubMed  CAS  Google Scholar 

  • Shimada H et al (2004) Thrombocytosis associated with poor prognosis in patients with esophageal carcinoma. J Am Coll Surg 198:737–741

    Article  PubMed  Google Scholar 

  • Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123:97–102

    Article  PubMed  CAS  Google Scholar 

  • Skinner SA, Frydman GM, O’Brien PE (1995) Microvascular structure of benign and malignant tumors of the colon in humans. Dig Dis Sci 40:373–384

    Article  PubMed  CAS  Google Scholar 

  • Stracke ML, Aznavoorian SA, Beckner ME, Liotta LA, Schiffmann E (1991) Cell motility, a principal requirement for metastasis. EXS 59:147–162

    PubMed  CAS  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184

    Article  PubMed  CAS  Google Scholar 

  • Thelen A et al (2008) Microvessel density correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma. J Gastroenterol 43:959–966

    Article  PubMed  Google Scholar 

  • Tsubura E, Yamashita T, Sone S (1983) Inhibition of the arrest of hematogenously disseminated tumor cells. Cancer Metastasis Rev 2:223–237

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1858) Cellularpathologie. Hirschwald, Berlin

    Google Scholar 

  • Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19

    PubMed  CAS  Google Scholar 

  • Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff J et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60:2504–2511

    PubMed  CAS  Google Scholar 

  • Yildiz E, Ayan S, Goze F, Gokce G, Gultekin EY (2008) Relation of microvessel density with microvascular invasion, metastasis and prognosis in renal cell carcinoma. BJU Int 101:758–764

    Article  PubMed  Google Scholar 

  • Zeimet AG, Marth C, Muller-Holzner E, Daxenbichler G, Dapunt O (1994) Significance of thrombocytosis in patients with epithelial ovarian cancer. Am J Obstet Gynecol 170:549–554

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno F. Fernandes MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernandes, B. (2013). Hematogenous Dissemination. In: Burnier, J., Burnier, Jr., M. (eds) Experimental and Clinical Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3685-0_13

Download citation

Publish with us

Policies and ethics