Skip to main content

Densitometry Techniques

  • Chapter
  • First Online:
Bone Densitometry for Technologists

Abstract

Clinical densitometry is relatively new, but densitometry itself is actually quite old. It was first described over 100 years ago in the field of dental radiology as dentists attempted to quantify the bone density in the mandible [1, 2]. With today’s techniques, bone density can be quantified in almost every region of the skeleton. The extraordinary technical advances in recent years have expanded the realm of densitometry from that of a quantitative technique to that of an imaging technique as well. But even the oldest techniques remain both viable and valuable with computer modernization. Densitometry technologies have evolved as our understanding of relevant disease processes has increased. In a complimentary fashion, our understanding of the disease processes has increased as the technologies have evolved. Although current clinical guidelines have focused our attention overwhelmingly on DXA studies of the spine and proximal femur, other technologies for quantifying the bone density and other skeletal sites to which they may be applied are worthy of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

     Correlation indicates the strength of the association between 2 values or variables. The correlation value is denoted with the letter “r.” A perfect correlation would be indicated by an r value of +1.00 or −1.00.

  2. 2.

     Techniques are compared on the basis of accuracy and precision, which can be described using the percent coefficient of variation (%CV). The %CV is the standard deviation divided by the average of replicate measurements expressed as a percentage. The lower the %CV, the better the accuracy or precision.

  3. 3.

     Single-photon absorptiometry is discussed later in this chapter.

  4. 4.

     Picture archiving and communications system

  5. 5.

     Ward’s triangle was first described by F.O. Ward in Outlines of Human Osteology, London; Henry Renshaw, 1838. It is a triangular region created by the intersection of three groups of trabeculae in the femoral neck.

  6. 6.

     See Chap. 1 for a definition of accuracy and precision and Chap. 7 for an in-depth discussion of precision.

  7. 7.

     See Chap. 1 for a discussion of the composition of the radius and ulna.

  8. 8.

     See Chap. 5 for a discussion of the effective dose.

  9. 9.

     Global fracture risk refers to the risk of having any and all types of fractures combined. This is in contrast to a site-specific fracture risk prediction in which the risk for a fracture at a specific skeletal site is given, such as spine fracture risk or hip fracture risk.

  10. 10.

     See Chap. 7 for a discussion of the calculation of the magnitude of change needed for 95 % confidence.

  11. 11.

    Although spine bone density studies with dual-energy X-ray absorptiometry are often referred to as AP spine studies, the beam actually passes in a posterior to anterior direction. Such studies are correctly characterized as PA spine studies, but it is an accepted convention to refer to them as AP spine bone density studies.

References

  1. Dennis J. A new system of measurement in X-ray work. Dental Cosmos. 1897;39:445–54.

    Google Scholar 

  2. Price WA. The science of dental radiology. Dental Cosmos. 1901;43:483–503.

    Google Scholar 

  3. Johnston CC, Epstein S. Clinical, biochemical, radiographic, epidemiologic, and economic features of osteoporosis. Orthop Clin North Am. 1981;12:559–69.

    PubMed  Google Scholar 

  4. Aitken M. Measurement of bone mass and turnover. Osteoporosis in clinical practice. Bristol: John Wright & Sons Ltd; 1984. p. 19–20.

    Google Scholar 

  5. Singh J, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am. 1970;52-A:457–67.

    Google Scholar 

  6. Bohr H, Schadt O. Bone mineral content of femoral bone and lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop Relat Res. 1983;179:240–5.

    Article  PubMed  Google Scholar 

  7. Nordin BEC. Osteoporosis with particular reference to the menopause. In: Avioli LV, editor. The osteoporotic syndrome. New York: Grune & Stratton; 1983. p. 13–44.

    Google Scholar 

  8. Shimmins J, Anderson JB, Smith DA, et al. The accuracy and reproducibility of bone mineral measurements “in vivo”. (a) The measurement of metacarpal mineralisation using an X-ray generator. Clin Radiol. 1972;23:42–6.

    Article  PubMed  CAS  Google Scholar 

  9. Exton-Smith AN, Millard PH, Payne PR, Wheeler EF. Method for measuring quantity of bone. Lancet. 1969;2:1153–4.

    Article  PubMed  CAS  Google Scholar 

  10. Dequeker J. Precision of the radiogrammetric evaluation of bone mass at the metacarpal bones. In: Dequeker J, Johnston CC, editors. Non-invasive bone measurements: methodological problems. Oxford: IRL Press; 1982. p. 27–32.

    Google Scholar 

  11. Aitken JM, Smith CB, Horton PW, et al. The interrelationships between bone mineral at different skeletal sites in male and female cadavera. J Bone Joint Surg Br. 1974;56B:370–5.

    Google Scholar 

  12. Meema HE, Meindok H. Advantages of peripheral radiogrammetry over dual-photon absorptiometry of the spine in the assessment of prevalence of osteoporotic vertebral fractures in women. J Bone Miner Res. 1992;7:897–903.

    Article  PubMed  CAS  Google Scholar 

  13. Bywaters EGL. The measurement of bone opacity. Clin Sci. 1948;6:281–7.

    PubMed  CAS  Google Scholar 

  14. Barnett E, Nordin BEC. Radiologic assessment of bone density. 1.-The clinical and radiological problem of thin bones. Br J Radiol. 1961;34:683–92.

    Article  PubMed  CAS  Google Scholar 

  15. Bouxsein ML, Palermo L, Yeung C, Black DM. Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the Study of Osteoporotic Fractures. Osteoporos Int. 2002;12:358–65.

    Article  Google Scholar 

  16. Cummings S, Black D, Nevitt M, et al. Appendicular bone density and age predict hip fractures in women. JAMA. 1990;263:665–8.

    Article  PubMed  CAS  Google Scholar 

  17. Mack PB, Brown WN, Trapp HD. The quantitative evaluation of bone density. Am J Roentgenol Radium Ther. 1949;61:808–25.

    CAS  Google Scholar 

  18. Vose GP, Mack PB. Roentgenologic assessment of femoral neck density as related to fracturing. Am J Roentgenol Radium Ther Nucl Med. 1963;89:1296–301.

    PubMed  CAS  Google Scholar 

  19. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet. 1993;341:72–5.

    Article  PubMed  CAS  Google Scholar 

  20. Mazess RB. Noninvasive methods for quantitating trabecular bone. In: Avioli LV, editor. The osteoporotic syndrome. New York: Grune & Stratton; 1983. p. 85–114.

    Google Scholar 

  21. Mack PB, O’Brien AT, Smith JM, Bauman AW. A method for estimating degree of mineralization of bones from tracings of roentgenograms. Science. 1939;89:467.

    Article  PubMed  CAS  Google Scholar 

  22. Mack PB, Vogt FB. Roentgenographic bone density changes in astronauts during representative Apollo space flight. Am J Roentgenol Rad Ther Nucl Med. 1971;113:621–33.

    Article  CAS  Google Scholar 

  23. Cosman F, Herrington B, Himmelstein S, Lindsay R. Radiographic absorptiometry: a simple method for determination of bone mass. Osteoporos Int. 1991;2:34–8.

    Article  PubMed  CAS  Google Scholar 

  24. Yates AJ, Ross PD, Lydick E, Epstein RS. Radiographic absorptiometry in the diagnosis of osteoporosis. Am J Med. 1995;98:41S–7S.

    Article  PubMed  CAS  Google Scholar 

  25. Yang S, Hagiwara S, Engelke K, et al. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Radiology. 1994;192:857–9.

    PubMed  CAS  Google Scholar 

  26. Kleerekoper M, Nelson DA, Flynn MJ, Pawluszka AS, Jacobsen G, Peterson EL. Comparison of radiographic absorptiometry with dual-energy X-ray absorptiometry and quantitative ­computed tomography in normal older white and black women. J Bone Miner Res. 1994;9:1745–9.

    Article  PubMed  CAS  Google Scholar 

  27. Mussolino ME, Looker AC, Madans JH, et al. Phalangeal bone density and hip fracture risk. Arch Intern Med. 1997;157:433–8.

    Article  PubMed  CAS  Google Scholar 

  28. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int. 1998;6:380–4.

    Article  Google Scholar 

  29. Cameron JR, Sorenson G. Measurements of bone mineral in vivo: an improved method. Science. 1963;142:230–2.

    Article  PubMed  CAS  Google Scholar 

  30. Vogel JM. Application principles and technical considerations in SPA. In: Genant HK, editor. Osteoporosis update 1987. San Francisco: University of California Printing Services; 1987. p. 219–31.

    Google Scholar 

  31. Johnston CC. Noninvasive methods for quantitating appendicular bone mass. In: Avioli L, editor. The osteoporotic syndrome. New York: Grune & Stratton; 1983. p. 73–84.

    Google Scholar 

  32. Barden HS, Mazess RB. Bone densitometry of the appendicular and axial skeleton. Top Geriatr Rehabil. 1989;4:1–12.

    Google Scholar 

  33. Kimmel PL. Radiologic methods to evaluate bone mineral content. Ann Intern Med. 1984;100:908–11.

    Article  Google Scholar 

  34. Steiger P, Genant HK. The current implementation of single-photon absorptiometry in commercially available instruments. In: Genant HK, editor. Osteoporosis update 1987. San Francisco: University of California Printing Services; 1987. p. 233–40.

    Google Scholar 

  35. Chesnut CH. Noninvasive methods for bone mass measurement. In: Avioli L, editor. The Osteoporotic syndrome. 3rd ed. New York: Wiley-Liss; 1993. p. 77–87.

    Google Scholar 

  36. Gardsell P, Johnell O, Nilsson BE. The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int. 1991;49:90–4.

    Article  PubMed  CAS  Google Scholar 

  37. Hui SL, Slemenda CW, Johnston CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med. 1989;111:355–61.

    Article  PubMed  CAS  Google Scholar 

  38. Ross PD, Davis JW, Vogel JM, Wasnich RD. A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int. 1990;46:149–61.

    Article  PubMed  CAS  Google Scholar 

  39. Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 1993;8:1227–33.

    Article  PubMed  Google Scholar 

  40. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fracture in older women. J Bone Miner Res. 1992;7:633–8.

    Article  PubMed  CAS  Google Scholar 

  41. Nord RH. Technical considerations in DPA. In: Genant HK, editor. Osteoporosis update 1987. San Francisco: University of California Printing Services; 1987. p. 203–12.

    Google Scholar 

  42. Dunn WL, Wahner HW, Riggs BL. Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology. 1980;136:485–7.

    PubMed  CAS  Google Scholar 

  43. Reed GW. The assessment of bone mineralization from the relative transmission of 241Am and 137Cs radiations. Phys Med Biol. 1966;11:174.

    Google Scholar 

  44. Roos B, Skoldborn H. Dual photon absorptiometry in lumbar vertebrae. I. Theory and method. Acta Radiol Ther Phys Biol. 1974;13:266–90.

    Article  PubMed  CAS  Google Scholar 

  45. Mazess RB, Ort M, Judy P. Absorptiometric bone mineral determination using 153Gd. In: Cameron JR, ed. Proceedings of bone measurements conference. U.S. Atomic Energy Commission, 1970:308–312.

    Google Scholar 

  46. Wilson CR, Madsen M. Dichromatic absorptiometry of vertebral bone mineral content. Invest Radiol. 1977;12:180–4.

    Article  PubMed  CAS  Google Scholar 

  47. Madsen M, Peppler W, Mazess RB. Vertebral and total body bone mineral content by dual photon absorptiometry. Calcif Tissue Res. 1976;2:361–4.

    Google Scholar 

  48. Wahner WH, Dunn WL, Mazess RB, et al. Dual-photon Gd-153 absorptiometry of bone. Radiology. 1985;156:203–6.

    PubMed  CAS  Google Scholar 

  49. Lindsay R, Fey C, Haboubi A. Dual photon absorptiometric measurements of bone mineral density increase with source life. Calcif Tissue Int. 1987;41:293–4.

    Article  PubMed  CAS  Google Scholar 

  50. Cummings SR, Black DB. Should perimenopausal women be screened for osteoporosis? Ann Intern Med. 1986;104:817–23.

    Article  PubMed  CAS  Google Scholar 

  51. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int. 1992;50:507–10.

    Article  PubMed  CAS  Google Scholar 

  52. Curry TS, Dowdey JE, Murry RC. Christensen’s physics of diagnostic radiology. Philadelphia: Lea & Febiger; 1990. p. 1–522.

    Google Scholar 

  53. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res. 1992;7:97–101.

    Article  PubMed  CAS  Google Scholar 

  54. Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M. Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis. Bone. 1992;13:317–20.

    Article  PubMed  CAS  Google Scholar 

  55. Peel NFA, Johnson A, Barrington NA, Smith TWD, Eastell R. Impact of anomalous vertebral segmentation of measurements of bone mineral density. J Bone Miner Res. 1993;8:719–23.

    Article  PubMed  CAS  Google Scholar 

  56. Lees B, Stevenson JC. An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Osteoporos Int. 1992;2:146–52.

    Article  PubMed  CAS  Google Scholar 

  57. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab. 1988;76:839–44.

    Article  Google Scholar 

  58. Holbrook TL, Barrett-Connor E, Klauber M, Sartoris D. A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip. Calcif Tissue Int. 1991;49:305–7.

    Article  PubMed  CAS  Google Scholar 

  59. Pouilles JM, Tremollieres F, Todorovsky N, Ribot C. Precision and sensitivity of dual-energy X-ray absorptiometry in spinal osteoporosis. J Bone Miner Res. 1991;6:997–1002.

    Article  PubMed  CAS  Google Scholar 

  60. Laskey MA, Cirsp AJ, Cole TJ, Compston JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol. 1992;65:1124–9.

    Article  PubMed  CAS  Google Scholar 

  61. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman J. Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res. 1992;7:1081–4.

    Article  PubMed  CAS  Google Scholar 

  62. Lai KC, Goodsitt MM, Murano R, Chesnut CC. A comparison of two dual-energy X-ray absorptiometry systems for spinal bone mineral measurement. Calcif Tissue Int. 1992;50:203–8.

    Article  PubMed  CAS  Google Scholar 

  63. Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res. 1994;9:1503–14.

    Article  PubMed  CAS  Google Scholar 

  64. Hanson J. Standardization of femur BMD. J Bone Miner Res. 1997;12:1316–7.

    Article  PubMed  CAS  Google Scholar 

  65. Kalender WA. Effective dose values in bone mineral measurements by photon-absorptiometry and computed tomography. Osteoporos Int. 1992;2:82–7.

    Article  PubMed  CAS  Google Scholar 

  66. Kelly TL, Crane G, Baran DT. Single x-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int. 1994;54:212–8.

    Article  PubMed  CAS  Google Scholar 

  67. Ruegsegger P, Elsasser U, Anliker M, Gnehn H, Kind H, Prader A. Quantification of bone mineralisation using computed tomography. Radiology. 1976;121:93–7.

    PubMed  CAS  Google Scholar 

  68. Genant HK, Cann CE, Ettinger B, Gorday GS. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med. 1982;97:699–705.

    Article  PubMed  CAS  Google Scholar 

  69. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980;4:493–500.

    Article  PubMed  CAS  Google Scholar 

  70. Genant HK, Block JE, Steiger P, Gluer C. Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK, editor. Osteoporosis update 1987. San Francisco: University of California Printing Services; 1987. p. 49–72.

    Google Scholar 

  71. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB. Influence of vertebral fat content on quantitative CT density. Radiology. 1986;159:463–6.

    PubMed  CAS  Google Scholar 

  72. Reinbold W, Adler CP, Kalender WA, Lente R. Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radiol. 1991;20:25–9.

    Article  PubMed  CAS  Google Scholar 

  73. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol. 1967;94:274–91.

    Article  Google Scholar 

  74. Genant HK, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol. 1977;12:545–51.

    Article  PubMed  CAS  Google Scholar 

  75. Cann CE. Quantitative computed tomography for bone mineral analysis: technical considerations. In: Genant HK, editor. Osteoporosis update 1987. San Francisco: University of California Printing Services; 1987. p. 131–44.

    Google Scholar 

  76. Gallagher C, Golgar D, Mahoney P, McGill J. Measurement of spine density in normal and osteoporotic subjects using computed tomography: relationship of spine density to fracture threshold and fracture index. J Comput Assist Tomogr. 1985;9:634–5.

    Article  Google Scholar 

  77. Raymaker JA, Hoekstra O, Van Putten J, Kerkhoff H, Duursma SA. Osteoporosis fracture prevalence and bone mineral mass measured with CT and DPA. Skeletal Radiol. 1986;15:191–7.

    Article  Google Scholar 

  78. Reinbold WD, Reiser UJ, Harris ST, Ettinger B, Genant HK. Measurement of bone mineral content in early postmenopausal and postmenopausal osteoporotic women. A comparison of methods. Radiology. 1986;160:469–78.

    PubMed  CAS  Google Scholar 

  79. Sambrook PN, Bartlett C, Evans R, Hesp R, Katz D, Reeve J. Measurement of lumbar spine bone mineral: a comparison of dual photon absorptiometry and computed tomography. Br J Radiol. 1985;58:621–4.

    Article  PubMed  CAS  Google Scholar 

  80. Genant HK, Ettinger B, Harris ST, Block JE, Steiger P. Quantitative computed tomography in assessment of osteoporosis. In: Riggs BL, Melton LJ, editors. Osteoporosis: etiology, diagnosis and management. New York: Raven; 1988. p. 221–49.

    Google Scholar 

  81. Richardson ML, Genant HK, Cann CE, et al. Assessment of metabolic bone disease by quantitative computed tomography. Clin Orthop Relat Res. 1985;195:224–38.

    PubMed  Google Scholar 

  82. Gluer C, Wu C, Jergas M, Goldstein S, Genant H. Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int. 1994;55:46–52.

    Article  PubMed  CAS  Google Scholar 

  83. Nicholson P, Haddaway M, Davie M. The dependence of ultrasonic properties on orientation in human vertebral bone. Phys Med Biol. 1994;39:1013–24.

    Article  PubMed  CAS  Google Scholar 

  84. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int. 1997;7:7–22.

    Article  PubMed  CAS  Google Scholar 

  85. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet. 1996;348:511–4.

    Article  PubMed  CAS  Google Scholar 

  86. Bauer DC, Gluer CC, Cauley JA, et al. Bone ultrasound predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med. 1997;157:629–34.

    Article  PubMed  CAS  Google Scholar 

  87. Njeh CF, Hans D, Li J, et al. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int. 2000;11:1051–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnick, S.L., Lewis, L.A. (2013). Densitometry Techniques. In: Bone Densitometry for Technologists. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3625-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3625-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3624-9

  • Online ISBN: 978-1-4614-3625-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics