Skip to main content

Catastrophic Optical Damage in Quantum Dot Lasers

  • Chapter
  • First Online:
  • 2588 Accesses

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 13))

Abstract

A review of the high power performance of quantum dot (QD) lasers and one of its failure modes by catastrophic optical damage (COD) is presented. Since the first lasing action reported in 1994, a rapid advancement in the output power of QD lasers has been achieved. QD lasers with excellent optical power from a few mW to more than 11 W have been reported. As the QD laser output power continues to reach higher levels, problems such as COD which causes sudden failure of the laser inevitably become a problem that requires an immediate solution. Over the years, COD failure has been widely reported in QD lasers with emission wavelengths varying from 0.9 to 1.3 μm. In this chapter, factors contributing to the COD failure in high power QD lasers are discussed and existing methods to suppress the COD are assessed. Finally, a novel laser annealing technique with in situ monitoring and control capabilities for the formation of non-absorbing mirrors in QD laser is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hall, R.N., Fenner, G.E., Kingsley, J.D., Soltys, T.J., Carlson, R.O.: Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962)

    Article  ADS  Google Scholar 

  2. Nathan, M.I., Dumke, W.P., Burns, G., Dill, F.H., Lasher, G.: Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1, 62 (1962)

    Article  ADS  Google Scholar 

  3. Maiman, T.H.: Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  4. Dingle, R., Henry, C.H.: Quantum effects in heterostructure lasers, U.S. Patent #3,982,207, filed 7 March 1975, issued 21 Sept 1976

    Google Scholar 

  5. Kapon, E., Hwang, D.M., Bhat, R.: Stimulated-emission in semiconductor quantum wire heterostructures. Phys. Rev. Lett. 63, 430–433 (1989)

    Article  ADS  Google Scholar 

  6. Ledentsov, N.N., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Maksimov, M.V., Tabatadze, I.G., Kopev, P.S.: Optical-properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors 28, 832–834 (1994)

    ADS  Google Scholar 

  7. Kirstaedter, N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop’ev, P.S., Alferov, Zh.I., Richter, U., Werner, P., Gosele, U., Heydenreich, J.: Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416–1417 (1994)

    Article  Google Scholar 

  8. Sellin, R.L., Ribbat, C., Bimberg, D., Rinner, F., Konstanzer, H., Kelemen, M.T., Mikulla, M.: High-reliability MOCVD-grown quantum dot laser. Electron. Lett. 38, 883–884 (2002)

    Article  Google Scholar 

  9. Kovsh, A.R., Maleev, N.A., Zhukov, A.E., Mikhrin, S.S., Vasil’ev, A.P., Shemyakov, Yu.M., Maximov, M.V., Livshits, D.A., Ustinov, V.M.: Alferov, Zh.1., Ledentsov, N.N., Bimberg, D.: InAs/lnGaAs/GaAs quantum dot lasers of 1.3 μm range with high (88%) differential efficiency. Electron. Lett. 38, 1104–1106 (2002)

    Article  Google Scholar 

  10. Sugawara, M., Usami, M.: Quantum dot devices: handling the heat. Nat. Photon. 3, 30–31 (2009)

    Article  ADS  Google Scholar 

  11. Tanaka, Y., Ishida, M., Takada, K., Yamamoto, T., Song H.-Z., Nakata, Y., Yamaguchi, M., Nishi, K., Sugawara, M., Arakawa, Y.: 25 Gbps direct modulation in 1.3 μm InAs/GaAs high-density quantum dot lasers, conference on lasers and electro-optics (CLEO) and quantum electronics and laser science conference (QELS), 16–21 May, pp. 1–2 (2010)

    Google Scholar 

  12. Maximov, M.V., Shernyakov, Yu.M., Tsatsul’nikov, A.F., Lunev, A.V., Sakharov, A.V., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kovsh, A.R., Kop’ev, P.S., Asryan, L.V., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D., Kosogov, A.O., Werner, P.: High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser. J. Appl. Phys. 83, 5561–5563 (1998)

    Article  ADS  Google Scholar 

  13. Sumpf, B., Deubert, S., Erbert, G., Fricke, J., Reithmaier, J.P., Forchel, A., Staske, R., Trankle, G.: High-power 980 nm quantum dot broad area lasers. Electron. Lett. 39, 1655–1657 (2003)

    Article  Google Scholar 

  14. Heinrichsdorff, F., Ribbat, Ch., Grundmann, M., Bimberg, D.: High-power quantum-dot lasers at 1,100 nm. Appl. Phys. Lett. 76, 556–558 (2000)

    Article  ADS  Google Scholar 

  15. Chia, C.K., Suryana, M., Hopkinson, M.: Thermal runaway and optical efficiency in InAs/GaAs quantum dot laser. Appl. Phys. Lett. 95, 141106 (2009)

    Article  ADS  Google Scholar 

  16. Grundmann, M., Heinrichsdorff, F., Ribbat, C., Mao, M.-H., Bimberg, D.: Quantum dot lasers: recent progress in theoretical understanding and demonstration of high-output-power operation. Appl. Phys. B 69, 413–416 (1999)

    Article  ADS  Google Scholar 

  17. Kovsh, A.R., Livshits, D.A., Zhukov, A.E., Egorov, A.Yu., Maximov, M.V., Ustinov, V.M., Tarasov, I.S., Ledentsov, N.N., Kop’ev, P.S., Alferov, Zh.I., Bimberg, D.: Quantum-dot injection heterolaser with 3.3 W output power. Tech. Phys. Lett. 25, 438–439 (1999)

    Article  ADS  Google Scholar 

  18. Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., Deppe, D.G.: 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 73, 2564–2566 (1998)

    Article  ADS  Google Scholar 

  19. Liu, H.Y., Liew, S.L., Badcock, T., Mowbray, D.J., Skolnick, M.S., Ray, S.K., Choi, T.L., Groom, K.M., Stevens, B., Hasbullah, F., Jin, C.Y., Hopkinson, M., Hogg, R.A.: p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Appl. Phys. Lett. 89, 073113 (2006)

    Article  ADS  Google Scholar 

  20. Grundmann, M., Heinrichsdorff, F., Ledentsov, N.N., Ribbat, C., Bimberg, D., Zhukov, A.E., Kovsh, A.R., Maximov, M.V., Shernyakov, Y.M., Lifshits, D.A., Ustinov, V.M., Alferov, Zh.I.: Progress in quantum dot lasers: 1,100 nm, 1,300 nm, and high power applications. Jpn. J. Appl. Phys. Part 1(39), 2341–2343 (2000)

    Article  ADS  Google Scholar 

  21. Polyakov, N.K., Samsonenko, Yu.B., Ustinov, V.M., Zakharov, N.D., Werner, P.: Room-temperature 1.5–1.6 μm photoluminescence from InGaAs/GaAs heterostructures grown at low substrate temperature. Semiconductors 37, 1406–1410 (2003)

    Article  ADS  Google Scholar 

  22. Ziegler, M., Tien, T.Q., Schwirzke-Schaaf, S., Tomm, J.W., Sumpf, B., Erbert, G., Oudart, M., Nagle, J.: Gradual degradation of red-emitting high-power diode laser bars. Appl. Phys. Lett. 90, 171113 (2007)

    Article  ADS  Google Scholar 

  23. Martín-Martín, A., Avella, M., Iñiguez, M.P., Jiménez, J., Oudart, M., Nagle, J.: A physical model for the rapid degradation of semiconductor laser diodes. Appl. Phys. Lett. 93, 171106 (2008)

    Article  ADS  Google Scholar 

  24. Moison, J.M., Elcess, K., Houzay, F., Marzin, J.Y., Gerard, J.M., Barthe, F., Bensoussan, M.: Near-surface GaAs/Ga0.7Al0.3As quantum wells: interaction with the surface states. Phys. Rev. B 41, 12945–12948 (1990)

    Article  ADS  Google Scholar 

  25. Saito, H., Nishi, K., Sugou, S.: Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission. Appl. Phys. Lett. 73, 2742–2744 (1998)

    Article  ADS  Google Scholar 

  26. Nakwaski, W.: Thermal analysis of the catastrophic mirror damage in laser diodes. J. Appl. Phys. 57, 2424 (1985)

    Article  ADS  Google Scholar 

  27. Ziegler, M., Tomm, J.W., Reeber, D., Elsaesser, T., Zeimer, U., Larsen, H.E., Petersen, P.M., Andersen, P.E.: Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation. Appl. Phys. Lett. 94, 191101 (2009)

    Article  ADS  Google Scholar 

  28. Hempel, M., Tomm, J.W., Ziegler, M., Elsaesser, T., Michel, N., Krakowski, M.: Catastrophic optical damage at front and rear facets of diode lasers. Appl. Phys. Lett. 97, 231101 (2010)

    Article  ADS  Google Scholar 

  29. Smith, W.R.: Mathematical modeling of thermal runaway in semiconductor laser operation. J. Appl. Phys. 87, 8276–8285 (2000)

    Article  ADS  Google Scholar 

  30. Ko, H.-C., Cho, M.-W., Chang, J.-H., Yang, M.: A new structure of 780 nm AlGaAs/GaAs high power laser diode with non-absorbing mirrors. Appl. Phys. A 68, 467–470 (1999)

    Article  ADS  Google Scholar 

  31. Rinner, F., Rogg, J., Kelemen, M.T., Mikulla, M., Weimann, G., Tomm, J.W., Thamm, E., Poprawe, R.: Facet temperature reduction by a current blocking layer at the front facets of high-power InGaAs/AlGaAs lasers. J. Appl. Phys. 93, 1848–1850 (2003)

    Article  ADS  Google Scholar 

  32. Marsh, J.H.: The role of monolithic integration in advanced laser products. J. Cryst. Growth 288, 2–6 (2006)

    Article  ADS  Google Scholar 

  33. Walker, C.L., Bryce, A.C., Marsh, J.H.: Improved catastrophic optical damage level from laser with nonabsorbing mirrors. IEEE Photon. Technol. Lett. 14, 1394–1396 (2002)

    Article  ADS  Google Scholar 

  34. Kawazu, Z., Tashiro, Y., Shima, A., Suzuki, D., Nishiguchi, H., Yagi, T., Omura, E.: Over 200 mW operation of single-lateral mode 780 nm laser diodes with window–mirror structure. IEEE Photon. Technol. Lett. 7, 184–187 (2001)

    Google Scholar 

  35. Chia, C.K., Chua, S.J., Tripathy, S., Dong, J.R.: Group-V intermixing in InAs/InP quantum dots. Appl. Phys. Lett. 86, 051905 (2005)

    Article  ADS  Google Scholar 

  36. Cusumano, P., Ooi, B.S., Helmy, A.S., Ayling, S.G., Bryce, A.C., Marsh, J.H., Voegele, B., Rose, M.J.: Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer. J. Appl. Phys. 81, 2445–2447 (1997)

    Article  ADS  Google Scholar 

  37. Boyd, I.W., Wilson, J.I.B.: Laser annealing for semiconductor devices. Nature 287, 278 (1980)

    Article  ADS  Google Scholar 

  38. Deppe, D.G., Holonyak, N.Jr.: Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures. J. Appl. Phys. 64, R93–R113 (1988)

    Article  ADS  Google Scholar 

  39. Laidig, W.D., Holonyak, N.Jr., Camras, M.D., Hess, K., Coleman, J.J., Kapkus, P.K., Bardeen, J.: Disorder of an AlAs-GaAs superlattice by impurity diffusion. Appl. Phys. Lett. 38, 776–778 (1981)

    Article  ADS  Google Scholar 

  40. Djie, H.S., Mei, T., Arokiaraj, J., Sookdhis, C., Yu, S.F., Ang, L.K., Tang, X.H.: Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing. IEEE J. Quantum Electron. 40, 166–174 (2004)

    Article  ADS  Google Scholar 

  41. Barik, S., Tan, H.H., Jagadish, C.: High temperature rapid thermal annealing of phosphorous ion implanted InAs/InP quantum dots. Appl. Phys. Lett. 90, 093106 (2007)

    Article  ADS  Google Scholar 

  42. Barik, S., Fu, L., Tan, H.H., Jagadish, C.: Impurity-free disordering of InAs/InP quantum dots. Appl. Phys. Lett. 90, 243114 (2007)

    Article  ADS  Google Scholar 

  43. Lee, J.H., Choo, A.G., Lee, W.T., Yu, J.S., Park, G.G., Kim, T.I.: Enhanced COD of pump laser diode by laser annealing of the facet, the 4th IEEE international conference on VLSI and CAD, ICVC’95, 15–18 Oct 1995, Seoul, Korea (IEEE, New York), pp. 337–339 (1995)

    Google Scholar 

  44. Qiu, B.C., Bryce, A.C., De La Rue, R.M., Marsh, J.H.: Monolithic integration in InGaAs–InGaAsP multiquantum-well structure using laser processing. IEEE Photonics Technol. Lett. 10, 769–771 (1998)

    Article  ADS  Google Scholar 

  45. Chia, C.K., Suryana, M., Hopkinson, M.: In situ control and monitoring of photonic device intermixing during laser irradiation. Opt. Express 19, 9535–9540 (2011)

    Article  ADS  Google Scholar 

  46. Djie, H.S., Ooi, B.S., Gunawan, O.: Quantum dot intermixing using excimer laser irradiation. Appl. Phys. Lett. 89, 081901 (2006)

    Article  ADS  Google Scholar 

  47. McKee, A., McLean, C.J., Lullo, G., Bryce, A.C., De La Rue, R.M., Marsh, J.H., Button, C.C.: Monolithic integration in InGaAs–InGaAsP multiple quantum well structures using laser intermixing. IEEE J. Quantum Electron. 33, 45–55 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Kean Chia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chia, C.K., Hopkinson, M. (2012). Catastrophic Optical Damage in Quantum Dot Lasers. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_5

Download citation

Publish with us

Policies and ethics