Catastrophic Optical Damage in Quantum Dot Lasers

  • Ching Kean Chia
  • Mark Hopkinson
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 13)


A review of the high power performance of quantum dot (QD) lasers and one of its failure modes by catastrophic optical damage (COD) is presented. Since the first lasing action reported in 1994, a rapid advancement in the output power of QD lasers has been achieved. QD lasers with excellent optical power from a few mW to more than 11 W have been reported. As the QD laser output power continues to reach higher levels, problems such as COD which causes sudden failure of the laser inevitably become a problem that requires an immediate solution. Over the years, COD failure has been widely reported in QD lasers with emission wavelengths varying from 0.9 to 1.3 μm. In this chapter, factors contributing to the COD failure in high power QD lasers are discussed and existing methods to suppress the COD are assessed. Finally, a novel laser annealing technique with in situ monitoring and control capabilities for the formation of non-absorbing mirrors in QD laser is described.


Quantum Well Semiconductor Laser Laser Annealing Quantum Well Laser Differential Quantum Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hall, R.N., Fenner, G.E., Kingsley, J.D., Soltys, T.J., Carlson, R.O.: Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    Nathan, M.I., Dumke, W.P., Burns, G., Dill, F.H., Lasher, G.: Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1, 62 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    Maiman, T.H.: Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)ADSCrossRefGoogle Scholar
  4. 4.
    Dingle, R., Henry, C.H.: Quantum effects in heterostructure lasers, U.S. Patent #3,982,207, filed 7 March 1975, issued 21 Sept 1976Google Scholar
  5. 5.
    Kapon, E., Hwang, D.M., Bhat, R.: Stimulated-emission in semiconductor quantum wire heterostructures. Phys. Rev. Lett. 63, 430–433 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Ledentsov, N.N., Ustinov, V.M., Egorov, A.Y., Zhukov, A.E., Maksimov, M.V., Tabatadze, I.G., Kopev, P.S.: Optical-properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors 28, 832–834 (1994)ADSGoogle Scholar
  7. 7.
    Kirstaedter, N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop’ev, P.S., Alferov, Zh.I., Richter, U., Werner, P., Gosele, U., Heydenreich, J.: Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416–1417 (1994)CrossRefGoogle Scholar
  8. 8.
    Sellin, R.L., Ribbat, C., Bimberg, D., Rinner, F., Konstanzer, H., Kelemen, M.T., Mikulla, M.: High-reliability MOCVD-grown quantum dot laser. Electron. Lett. 38, 883–884 (2002)CrossRefGoogle Scholar
  9. 9.
    Kovsh, A.R., Maleev, N.A., Zhukov, A.E., Mikhrin, S.S., Vasil’ev, A.P., Shemyakov, Yu.M., Maximov, M.V., Livshits, D.A., Ustinov, V.M.: Alferov, Zh.1., Ledentsov, N.N., Bimberg, D.: InAs/lnGaAs/GaAs quantum dot lasers of 1.3 μm range with high (88%) differential efficiency. Electron. Lett. 38, 1104–1106 (2002)CrossRefGoogle Scholar
  10. 10.
    Sugawara, M., Usami, M.: Quantum dot devices: handling the heat. Nat. Photon. 3, 30–31 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Tanaka, Y., Ishida, M., Takada, K., Yamamoto, T., Song H.-Z., Nakata, Y., Yamaguchi, M., Nishi, K., Sugawara, M., Arakawa, Y.: 25 Gbps direct modulation in 1.3 μm InAs/GaAs high-density quantum dot lasers, conference on lasers and electro-optics (CLEO) and quantum electronics and laser science conference (QELS), 16–21 May, pp. 1–2 (2010)Google Scholar
  12. 12.
    Maximov, M.V., Shernyakov, Yu.M., Tsatsul’nikov, A.F., Lunev, A.V., Sakharov, A.V., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kovsh, A.R., Kop’ev, P.S., Asryan, L.V., Alferov, Zh.I., Ledentsov, N.N., Bimberg, D., Kosogov, A.O., Werner, P.: High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser. J. Appl. Phys. 83, 5561–5563 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Sumpf, B., Deubert, S., Erbert, G., Fricke, J., Reithmaier, J.P., Forchel, A., Staske, R., Trankle, G.: High-power 980 nm quantum dot broad area lasers. Electron. Lett. 39, 1655–1657 (2003)CrossRefGoogle Scholar
  14. 14.
    Heinrichsdorff, F., Ribbat, Ch., Grundmann, M., Bimberg, D.: High-power quantum-dot lasers at 1,100 nm. Appl. Phys. Lett. 76, 556–558 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Chia, C.K., Suryana, M., Hopkinson, M.: Thermal runaway and optical efficiency in InAs/GaAs quantum dot laser. Appl. Phys. Lett. 95, 141106 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Grundmann, M., Heinrichsdorff, F., Ribbat, C., Mao, M.-H., Bimberg, D.: Quantum dot lasers: recent progress in theoretical understanding and demonstration of high-output-power operation. Appl. Phys. B 69, 413–416 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Kovsh, A.R., Livshits, D.A., Zhukov, A.E., Egorov, A.Yu., Maximov, M.V., Ustinov, V.M., Tarasov, I.S., Ledentsov, N.N., Kop’ev, P.S., Alferov, Zh.I., Bimberg, D.: Quantum-dot injection heterolaser with 3.3 W output power. Tech. Phys. Lett. 25, 438–439 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Huffaker, D.L., Park, G., Zou, Z., Shchekin, O.B., Deppe, D.G.: 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 73, 2564–2566 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, H.Y., Liew, S.L., Badcock, T., Mowbray, D.J., Skolnick, M.S., Ray, S.K., Choi, T.L., Groom, K.M., Stevens, B., Hasbullah, F., Jin, C.Y., Hopkinson, M., Hogg, R.A.: p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Appl. Phys. Lett. 89, 073113 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Grundmann, M., Heinrichsdorff, F., Ledentsov, N.N., Ribbat, C., Bimberg, D., Zhukov, A.E., Kovsh, A.R., Maximov, M.V., Shernyakov, Y.M., Lifshits, D.A., Ustinov, V.M., Alferov, Zh.I.: Progress in quantum dot lasers: 1,100 nm, 1,300 nm, and high power applications. Jpn. J. Appl. Phys. Part 1(39), 2341–2343 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Polyakov, N.K., Samsonenko, Yu.B., Ustinov, V.M., Zakharov, N.D., Werner, P.: Room-temperature 1.5–1.6 μm photoluminescence from InGaAs/GaAs heterostructures grown at low substrate temperature. Semiconductors 37, 1406–1410 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Ziegler, M., Tien, T.Q., Schwirzke-Schaaf, S., Tomm, J.W., Sumpf, B., Erbert, G., Oudart, M., Nagle, J.: Gradual degradation of red-emitting high-power diode laser bars. Appl. Phys. Lett. 90, 171113 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Martín-Martín, A., Avella, M., Iñiguez, M.P., Jiménez, J., Oudart, M., Nagle, J.: A physical model for the rapid degradation of semiconductor laser diodes. Appl. Phys. Lett. 93, 171106 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Moison, J.M., Elcess, K., Houzay, F., Marzin, J.Y., Gerard, J.M., Barthe, F., Bensoussan, M.: Near-surface GaAs/Ga0.7Al0.3As quantum wells: interaction with the surface states. Phys. Rev. B 41, 12945–12948 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Saito, H., Nishi, K., Sugou, S.: Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5 μm emission. Appl. Phys. Lett. 73, 2742–2744 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Nakwaski, W.: Thermal analysis of the catastrophic mirror damage in laser diodes. J. Appl. Phys. 57, 2424 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    Ziegler, M., Tomm, J.W., Reeber, D., Elsaesser, T., Zeimer, U., Larsen, H.E., Petersen, P.M., Andersen, P.E.: Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation. Appl. Phys. Lett. 94, 191101 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Hempel, M., Tomm, J.W., Ziegler, M., Elsaesser, T., Michel, N., Krakowski, M.: Catastrophic optical damage at front and rear facets of diode lasers. Appl. Phys. Lett. 97, 231101 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Smith, W.R.: Mathematical modeling of thermal runaway in semiconductor laser operation. J. Appl. Phys. 87, 8276–8285 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Ko, H.-C., Cho, M.-W., Chang, J.-H., Yang, M.: A new structure of 780 nm AlGaAs/GaAs high power laser diode with non-absorbing mirrors. Appl. Phys. A 68, 467–470 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Rinner, F., Rogg, J., Kelemen, M.T., Mikulla, M., Weimann, G., Tomm, J.W., Thamm, E., Poprawe, R.: Facet temperature reduction by a current blocking layer at the front facets of high-power InGaAs/AlGaAs lasers. J. Appl. Phys. 93, 1848–1850 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Marsh, J.H.: The role of monolithic integration in advanced laser products. J. Cryst. Growth 288, 2–6 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Walker, C.L., Bryce, A.C., Marsh, J.H.: Improved catastrophic optical damage level from laser with nonabsorbing mirrors. IEEE Photon. Technol. Lett. 14, 1394–1396 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Kawazu, Z., Tashiro, Y., Shima, A., Suzuki, D., Nishiguchi, H., Yagi, T., Omura, E.: Over 200 mW operation of single-lateral mode 780 nm laser diodes with window–mirror structure. IEEE Photon. Technol. Lett. 7, 184–187 (2001)Google Scholar
  35. 35.
    Chia, C.K., Chua, S.J., Tripathy, S., Dong, J.R.: Group-V intermixing in InAs/InP quantum dots. Appl. Phys. Lett. 86, 051905 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Cusumano, P., Ooi, B.S., Helmy, A.S., Ayling, S.G., Bryce, A.C., Marsh, J.H., Voegele, B., Rose, M.J.: Suppression of quantum well intermixing in GaAs/AlGaAs laser structures using phosphorus-doped SiO2 encapsulant layer. J. Appl. Phys. 81, 2445–2447 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    Boyd, I.W., Wilson, J.I.B.: Laser annealing for semiconductor devices. Nature 287, 278 (1980)ADSCrossRefGoogle Scholar
  38. 38.
    Deppe, D.G., Holonyak, N.Jr.: Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures. J. Appl. Phys. 64, R93–R113 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    Laidig, W.D., Holonyak, N.Jr., Camras, M.D., Hess, K., Coleman, J.J., Kapkus, P.K., Bardeen, J.: Disorder of an AlAs-GaAs superlattice by impurity diffusion. Appl. Phys. Lett. 38, 776–778 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    Djie, H.S., Mei, T., Arokiaraj, J., Sookdhis, C., Yu, S.F., Ang, L.K., Tang, X.H.: Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing. IEEE J. Quantum Electron. 40, 166–174 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Barik, S., Tan, H.H., Jagadish, C.: High temperature rapid thermal annealing of phosphorous ion implanted InAs/InP quantum dots. Appl. Phys. Lett. 90, 093106 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Barik, S., Fu, L., Tan, H.H., Jagadish, C.: Impurity-free disordering of InAs/InP quantum dots. Appl. Phys. Lett. 90, 243114 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Lee, J.H., Choo, A.G., Lee, W.T., Yu, J.S., Park, G.G., Kim, T.I.: Enhanced COD of pump laser diode by laser annealing of the facet, the 4th IEEE international conference on VLSI and CAD, ICVC’95, 15–18 Oct 1995, Seoul, Korea (IEEE, New York), pp. 337–339 (1995)Google Scholar
  44. 44.
    Qiu, B.C., Bryce, A.C., De La Rue, R.M., Marsh, J.H.: Monolithic integration in InGaAs–InGaAsP multiquantum-well structure using laser processing. IEEE Photonics Technol. Lett. 10, 769–771 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    Chia, C.K., Suryana, M., Hopkinson, M.: In situ control and monitoring of photonic device intermixing during laser irradiation. Opt. Express 19, 9535–9540 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Djie, H.S., Ooi, B.S., Gunawan, O.: Quantum dot intermixing using excimer laser irradiation. Appl. Phys. Lett. 89, 081901 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    McKee, A., McLean, C.J., Lullo, G., Bryce, A.C., De La Rue, R.M., Marsh, J.H., Button, C.C.: Monolithic integration in InGaAs–InGaAsP multiple quantum well structures using laser intermixing. IEEE J. Quantum Electron. 33, 45–55 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Materials Research and EngineeringSingaporeSingapore
  2. 2.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations