Skip to main content

Exotic Behavior in Quantum Dot Mode-Locked Lasers: Dark Pulses and Bistability

  • Chapter
  • First Online:
Quantum Dot Devices

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 13))

  • 2606 Accesses

Abstract

Passively mode-locked semiconductor lasers with self-assembled quantum dot active regions can be operated in exotic output modes, stabilized by the complex gain and absorption dynamics inherent in these structures. One such device emits dark pulses—sharp dips on an otherwise stable continuous wave background—in an extended cavity design. We show that a dark pulse train is a solution to the master equation for mode-locked lasers and perform numerical modeling to test the stability of such a solution. A separate, monolithic design displays wavelength bistability and can be electrically switched between these two modes within just a few cavity round trips. This device can be made to switch between two stable wavelengths separated by just 7 nm up to over 40 nm with a contrast ratio of over 40 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coldren, L.A., Corzine, S.W.: Diode Lasers and Photonic Integrated Circuits. Wiley, New York (1995)

    Google Scholar 

  2. Borri, P., Langbein, W., Hvam, J.M., Heinrichsdorff, E., Mao, M.H., Bimberg, D.: Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 12(6), 594 (2000)

    Article  ADS  Google Scholar 

  3. Rafailov, E.U., Cataluna, M.A., Sibbett, W., Il’inskaya, N.D., Zadiranov, Y.M., Zhukov, A.E., Ustinov, V.M., Livshits, D.A., Kovsh, A.R., Ledentsov, N.N.: High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser. Appl. Phys. Lett. 87(8), 081107 (2005)

    Google Scholar 

  4. Schneider, S., Borri, P., Langbein, W., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Linewidth enhancement factor in InGaAs quantum-dot amplifiers. IEEE J. Quantum Electron. 40(10), 1423 (2004)

    Article  ADS  Google Scholar 

  5. Diels, J.-C., Rudolph, W.: Ultrashort Laser Pulse Phenomena, 2nd edn. Academic, New York (2006)

    Google Scholar 

  6. Hall, K.L., Lenz, G., Ippen, E.P., Raybon, G.: Heterodyne pump-probe technique for time-domain studies of optical nonlinearities in waveguides. Opt. Lett. 17(12), 874 (1999)

    Article  ADS  Google Scholar 

  7. Kapteyn, C.M.A., Lion, M., Heitz, R., Bimberg, D., Brunkov, P.N., Volovik, B.V., Konnikov, S.G., Kovsh, A.R., Ustinov, V.M.: Hole and electron emission from InAs quantum dots. Appl. Phys. Lett. 76(12), 1573 (2000)

    Article  ADS  Google Scholar 

  8. Rafailov, E.U., McRobbie, A.D., Cataluna, M.A., O’Faolain, L., Sibbett, W., Livshits, D.A.: Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses. Appl. Phys. Lett. 88(4), 041101 (2006)

    Google Scholar 

  9. Malins, D.B., Gomez-Iglesias, A., White, S.J., Sibbett, W., Miller, A., Rafailov, E.U.: Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 mm. Appl. Phys. Lett. 89(17), 171111 (2006)

    Google Scholar 

  10. Borri, P., Langbein, W., Hvam, J.M., Heinrichsdorff, F., Mao, M.H., Bimberg, D.: Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE J. Sel. Top. Quantum Electron. 6(3), 544 (2000)

    Article  Google Scholar 

  11. Haus, H.A.: Mode-locking with a fast saturable absorber. J. Appl. Phys. 46, 3049 (1975)

    Article  ADS  Google Scholar 

  12. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep.-Rev. Sect. Phys. Lett. 298(2–3), 81 (1998)

    Google Scholar 

  13. Haelterman, M., Emplit, P.: Optical dark soliton trains generated by passive spectral filtering technique. Electron. Lett. 29(4), 356 (1993)

    Article  Google Scholar 

  14. Weiner, A.M., Heritage, J.P., Hawkins, R.J., Thurston, R.N., Kirschner, E.M., Leaird, D.E., Tomlinson, W.J.: Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 61(21), 2445 (1988)

    Article  ADS  Google Scholar 

  15. Zhang, H., Tang, D.Y., Zhao, L.M., Wu, X.: Dark pulse emission of a fiber laser. Phys. Rev. A 80(4), 045803 (2009)

    Article  ADS  Google Scholar 

  16. Ablowitz, M.J., Horikis, T., Nixon, S., Frantzeskakis, D.: Dark solitons in mode-locked lasers. Opt. Lett. 36(6), 793 (2001)

    Article  ADS  Google Scholar 

  17. Lenstra, D., et al.: Coherence collapse in single-mode semiconductor lasers due to optical feedback. IEEE J. Quantum Electron. QE-21(6), 674–679 (1985)

    Article  ADS  Google Scholar 

  18. Carroll, O., et al.: Feedback induced instabilities in a quantum dot semiconductor laser. Opt. Express 14(22), 10831 (2006). 30 Oct

    Article  ADS  Google Scholar 

  19. Kärtner, F.X., Kopf, D., Keller, U.: J. Opt. Soc. Am. B 12, 486–496 (1995)

    Article  ADS  Google Scholar 

  20. Kawaguchi, H.: Bistable laser diodes and their applications: state of the art. IEEE J. Sel. Top. Quantum Electron. 3(5), 1254 (1997)

    Article  Google Scholar 

  21. Kawaguchi, H., Mori, T., Sato, Y., Yamayoshi, Y.: Optical buffer memory using polarization-bistable vertical-cavity surface-emitting lasers. Japan. J. Appl. Phys. Part 2-Lett. Express Lett. 45(33–36), L894 (2006)

    Article  Google Scholar 

  22. White, I., Penty, R., Webster, M., Chai, Y.J., Wonfor, A., Shahkooh, S.: Wavelength switching components for future photonic networks. IEEE Commun. Mag. 40(9), 74 (2002)

    Article  Google Scholar 

  23. Tangdiongga, E., Yang, X.L., Li, Z.G., Liu, Y., Lenstra, D., Khoe, G.D., Dorren, H.J.S.: Optical flip-flop: based on two-coupled mode-locked ring lasers. IEEE Photonics Technol. Lett. 17(1), 208 (2005)

    Article  ADS  Google Scholar 

  24. Qasaimeh, O., Zhou, W.D., Phillips, J., Krishna, S., Bhattacharya, P., Dutta, M.: Bistability and self-pulsation in quantum-dot lasers with intracavity quantum-dot saturable absorbers. Appl. Phys. Lett. 74(12), 1654 (1999)

    Article  ADS  Google Scholar 

  25. Uenohara, H., Takahashi, R., Kawamura, Y., Iwamura, H.: Static and dynamic response of multiple-quantum-well voltage-controlled bistable laser diodes. IEEE J. Quantum Electron. 32(5), 873 (1996)

    Article  ADS  Google Scholar 

  26. Shoji, H., Arakawa, Y., Fujii, Y.: Fast bistable wavelength switching characteristics in 2-electrode distributed feedback laser. IEEE Photonics Technol. Lett. 2(2), 109 (1990)

    Article  ADS  Google Scholar 

  27. Huang, X.D., Stintz, A., Li, H., Rice, A., Liu, G.T., Lester, L.F., Cheng, J., Malloy, K.J.: Bistable operation of a two-section 1.3 mm InAs quantum dot laser—absorption saturation and the quantum confined stark effect. IEEE J. Quantum Electron. 37(3), 414 (2001)

    Article  ADS  Google Scholar 

  28. Cataluna, M.A., Sibbett, W., Livshits, D.A., Weimert, J., Kovsh, A.R., Rafailov, E.U.: Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser. Appl. Phys. Lett. 89(8), 081124 (2006)

    Google Scholar 

  29. Feng, M., Brilliant, N.A., Cundiff, S.T., Mirin, R.P., Silverman, K.L.: Wavelength bistability in two-section mode-locked quantum-dot diode lasers. IEEE Photonics Technol. Lett. 19(9–12), 804 (2007)

    Article  ADS  Google Scholar 

  30. Siegman, A.E.: Lasers. University Science Books, Sausalito (1986)

    Google Scholar 

  31. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, Berlin (2003)

    Google Scholar 

  32. Lin, C.F., Ku, P.C.: Analysis of stability in two-mode laser systems. IEEE J. Quantum Electron. 32(8), 1377 (1996)

    Article  ADS  Google Scholar 

  33. Thompson, M.G., Rae, A., Sellin, R.L., Marinelli, C., Penty, R.V., White, I.H., Kovsh, A.R., Mikhrin, S.S., Livshits, D.A., Krestnikov, I.L.: Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers. Appl. Phys. Lett. 88(13), 133119 (2006)

    Google Scholar 

  34. Thompson, M.G., Rae, A.R., Xia, M., Penty, R., White, I.H.: InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15(3), 661 (2009)

    Article  Google Scholar 

  35. Alen, B., Bickel, F., Karrai, K., Warburton, R.J., Petroff, P.M.: Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83(11), 2235 (2003)

    Article  ADS  Google Scholar 

  36. Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature. IEEE J. Sel. Top. Quantum Electron. 8(5), 984 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Silverman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silverman, K., Feng, M., Mirin, R., Cundiff, S. (2012). Exotic Behavior in Quantum Dot Mode-Locked Lasers: Dark Pulses and Bistability. In: Wang, Z. (eds) Quantum Dot Devices. Lecture Notes in Nanoscale Science and Technology, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3570-9_2

Download citation

Publish with us

Policies and ethics