Optoelectronic Applications of Colloidal Quantum Dots

  • Zhiping Wang
  • Nanzhu Zhang
  • Kimber Brenneman
  • Tsai Chin Wu
  • Hyeson Jung
  • Sushmita Biswas
  • Banani Sen
  • Kitt Reinhardt
  • Sicheng Liao
  • Michael A. Stroscio
  • Mitra Dutta
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 13)

Abstract

This chapter highlights recent optoelectronic applications of colloidal quantum dots (QDs). In recent years, many colloidal QD-based optoelectronic devices, and device concepts have been proposed and studied. Many of these device concepts build on traditional optoelectronic device concepts. Increasingly, many new optoelectronic device concepts have been based on the use of biomolecule QD complexes. In this chapter, both types of structures are discussed. Special emphasis is placed on new optoelectronic device concepts that incorporate DNA-based aptamers in biomolecule QD complexes. Not only are the extensions of traditional devices and concepts realizable, such as QD-based photo detectors, displays, photoluminescent and photovoltaic devices, light-emitting diodes (LEDs), photovoltaic devices, and solar cells, but new devices concepts such a biomolecule-based molecular sensors possible. This chapter highlights a number of such novel QD-based devices and device concepts.

Keywords

Quantum dots Colloidal nanocrystals Optoelectronic devices 

References

  1. 1.
    Linder, K.K., Phillips, J., Osasaimeh, O., Liu, X.F., Krishina, S., Bhattacharya, P., Jiang, J.C.: Self-organised In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl. Phys. Lett. 74, 1355–1357 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Stiff-Roberts, A.D., Chakrabarti, S., Su, X., Bhattacharya, P.: Research propels quantum dots forward. Laser Focus World 41, 103–108 (2005)Google Scholar
  3. 3.
    Su, X.H., Chakrabarti, S., Stiff-Roberts, A.D., Singh, J., Bhattacharya, P.: Quantum dot infrared photodetector design based on double-barrier resonant tunneling. Electron. Lett. 40, 1082–1083 (2004)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S., Stiff-Roberts, A.D., Bhattacharya, P., Kennerly, S.W.: Heterostructures for achieving large responsivity InAs/GaAs quantum dot infrared photodetectors. J. Vac. Sci. Technol. B 22, 1499–1502 (2004)CrossRefGoogle Scholar
  5. 5.
    Bockelmann, I., Bastard, G.: Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42, 8947–8951 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Inoshita, T., Sakaki, H.: Electron relaxation in a quantum dot: significance of multiphonon processes. Phys. Rev. B 46, 7260–7263 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Leburton, J.P., Fonseca, R.C., Nagaraja, S., Shumway, J., Ceperley, D., Martin, R.M.: Electronic structure and many-body effects in self-assembled quantum dots. J. Phys.: Condens. Matter 11, 5953–5967 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Bhattacharya, P., Ghosh, S., Stiff-Roberts, A.D.: Quantum dot optoelectronic devices. Annu. Rev. Mater. Res. 34, 1–40 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Skolnick, M.S., Mowbray, D.J.: Self-assembled semiconductor quantum dots: fundamental physics and device applications. Annu. Rev. Mater. Res. 34, 181–218 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Bhattacharya, P.K., Ghosh, S.: Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with a 15 GHz modulation bandwidth at room temperature. Appl. Phys. Lett. 80, 3482–3484 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Blakesley, C., See, P., Shields, A.J., Kardynal, B.E., Atkinson, P., Farrer, I., Ritchie, D.A.: Efficient single photon detection by quantum dot resonant tunneling diodes. Phys. Rev. Lett. 94, 067401-1-4 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Shields, A.J., O’Sullivan, M.P., Farrer, I., Ritchie, D.A., Hogg, R.A., Leadbeater, M.L., Norman, C.E., Pepper, M.: Detection of single photons using a field-effect transistor gated by a layer of quantum dots. Appl. Phys. Lett. 76, 3673–3675 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Alexson, D., Li, Y., Ramadurai, D., Shi, P., George, L., George, L., Uddin, M., Thomas, P., Rufo, S., Dutta, M., Stroscio, M.A.: Binding of semiconductor quantum dots to cellular integrins. IEEE Trans. Nanotechnol. 3, 86–92 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Ramadurai, D., Geerpuram, D., Alexson, D., Dutta, M., Kotov, N.A., Tang, Z., Stroscio, M.A.: Electrical and optical properties of colloidal semiconductor nanocrystals in aqueous environments. Superlattices Microstruct. 40, 38–44 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Stroscio, M.A., Dutta, M.: Integrated biological-semiconductor devices. Proc. IEEE 93, 1772–1783 (2005)CrossRefGoogle Scholar
  16. 16.
    Zhao, J., Zhang, J., Jiang, C., Bohnenberger, J., Basche, T., Mews, A.: Electroluminescence from isolated CdSe/ZnS quantum dots in multilayered light-emitting diodes. J. Appl. Phys. 96, 3206–3210 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Kato, T., Okazaki, A., Hayase, S.: Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells. Chem. Commun. 3, 363–365 (2005)CrossRefGoogle Scholar
  18. 18.
    Bakkers, E.P.A.M., Marsman, A.W., Jenneskens, L., Vanmaekelbergh, D.: Distance-dependent electron transfer in Au/spacer/Q-CdSe Assemblies. Angew. Chem. 39, 2297–2299 (2000)CrossRefGoogle Scholar
  19. 19.
    Crooker, S.A., Hollingsworth, J.A., Tretiak, S., Klimov, V.I.: Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: toward engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802–186809 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Jung, H., Gulis, G., Gupta, S., Redding, K., Gosztola, D.J., Wiederrecht, G.P., Stroscio, M.A., Dutta, M.: Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I. J. Phys. Chem. B 114, 14544–14549 (2010)CrossRefGoogle Scholar
  21. 21.
    Constantine, C.A., Gattas-Asfura, K.M., Mello, S.V., Crespo, G., Rastogi, V., Cheng, T.C., DeFrank, J.J., Leblanc, R.M.: Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir 19, 9863–9867 (2003)CrossRefGoogle Scholar
  22. 22.
    Jaffar, S., Nam, K.T., Khademhosseini, A., Xing, J., Langer, R.S., Belcher, A.M.: Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots. Nano Lett. 4, 1421–1425 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Tang, J., Birkeldal, H., McFarland, E.W., Stucky, G.D.: Self-assembly of CdSe/CdS quantum dots by hydrogen bonding on Au surfaces for photoreception. Chem. Commun. 18, 2278–2279 (2003)CrossRefGoogle Scholar
  24. 24.
    Pacifico, J., Gomez, D., Mulvaney, P.: A simple route to tunable two-dimensional arrays of quantum dots. Adv. Mater. 17, 415–419 (2005)CrossRefGoogle Scholar
  25. 25.
    Ouyang, M., Awschalom, D.D.: Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Stroscio, M.A., Dutta, M., Ramadurai, D., Shi, P., Li, Y., Vasudev, M., Alexson, D., Kohanpour, B., Sethuraman, A., Saini, V., Raichura, A., Yang, J.: Optical and electrical properties of colloidal quantum dots in electrolytic environments: using biomolecular links in chemically-directed assembly of quantum dot networks. J. Comput. Electron. 4, 21–25 (2005)CrossRefGoogle Scholar
  27. 27.
    Yu, W.W., Qu, L., Guo, W., Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)CrossRefGoogle Scholar
  28. 28.
    Albanesi, E.A., Peltzer y Blanca, E.L., Petukhov, A.G.: Calculated optical spectra of IV–VI semiconductors PbS, PbSe and PbTe. Comput. Mater. Sci. 32, 85–95 (2005)CrossRefGoogle Scholar
  29. 29.
    Tsuchiya, T., Ozaki, S., Adachi, S.: Modelling the optical constants of cubic ZnS in the 0–20 eV spectral region. J. Phys.: Condens. Matter 15, 3717–3730 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Al Kuhaimi, S.A.: Conduction and valence band offsets of CdS/CdTe solar cells. Energy 25, 731–739 (2000)CrossRefGoogle Scholar
  31. 31.
    Lazarenkova, O.L., Balandin, A.A.: Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509–5515 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Balandin, A.A., Lazarenkova, O.L.: Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices. Appl. Phys. Lett. 82, 415–417 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Lyang-Geller, Y.B., Leburton, J.P.: Resonant tunnelling through arrays of nanostructures. Semicond. Sci. Technol. 13, 35–42 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Dmitriev, I.A., Suris, R.A.: Electron localization and bloch oscillations in quantum-dot superlattices under a constant electric field. Low-Dimensional Systems 35, 219–226 (2001)Google Scholar
  35. 35.
    Yamanaka, T., Sun, K., Li, Y., Dutta, M., Stroscio, M.A.: Spontaneous polarizations, electrical properties, and phononic properties of GaN nanostructures and systems. In: Morkoc, H., Litton, C.W. (eds.) GaN Materials and Devices II, SPIE 6473, 64730F-1-14 (2007)Google Scholar
  36. 36.
    Vasudev, M., Yamanaka, T., Sun, K., Li, Y., Yang, J., Ramadurai, D., Stroscio, M.A., Dutta, M.: Colloidal quantum dots as optoelectronic elements. In Razeghi, M., Brown, G.J. (eds.) Quantum Sensing and Nanophotonic Devices IV, SPIE 6479, 64790I-1-12 (2007)Google Scholar
  37. 37.
    Biswas, S., Dutta, M., Stroscio, M.A.: Negative differential resistance in conductive polymer and semiconducting quantum dot nanocomposite systems. Appl. Phys. Lett. 95, 1821011–3 (2009)Google Scholar
  38. 38.
    Coe-Sullivan, S., Steckel, J.S., Woo, W.R., Bawendi, M.G., Bulović, V.: Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Adv. Funct. Mater. 15, 1117–1124 (2005)CrossRefGoogle Scholar
  39. 39.
    Coe-Sullivan, S., Woo, W.K., Steckel, J.S., Bawendi, M.G., Bulović, V.: Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Org. Electron. 4, 123–130 (2003)CrossRefGoogle Scholar
  40. 40.
    Coe, S., Woo, W.K., Bawendi, M., Bulović, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002). (Letter to Nature)ADSCrossRefGoogle Scholar
  41. 41.
    Lee, J., Sundar, V.C., Heine, J.R., Bawendi, M.G., Jensen, K.F.: Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12, 1102–1105 (2000)CrossRefGoogle Scholar
  42. 42.
    Anikeeva, P.O., Madigan, C.F., Coe-Sullivan, S.A., Steckel, J.S., Bawendi, M.G., Bulović, V.: Photoluminescence of CdSe/ZnS Core/Shell quantum dots enhanced by energy transfer from a phosphorescent donor. Chem. Phys. Lett. 424, 120–125 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Lin, Y., Zhang, J., Sargent, E.H., Kumacheva, E.: Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. Appl. Phys. Lett. 81, 3134–3136 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Yang, J., Yamanaka, T., Sun, K., Stroscio, M.A., Dutta, M., Zhong, J., Chen, H., Saraf, G., Lu, Y.: Optoelectronic properties for ZnO and related semiconductors in various nanoscale geometries. ECS Trans. 6, 149–160 (2007)CrossRefGoogle Scholar
  45. 45.
    Oertel, D.C., Bawendi, M.G., Arango, A.C., Bulović, V.: Photodetectors based on treated CdSe quantum-dot films. Appl. Phys. Lett. 87, 213505-1-3 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Kang, K.S., Ju, H.L., Han, W.H., Lee, J.H., Choi, J.G., Boo, D.W.: Photoluminescence characteristics of coupled CdSe/ZnS quantum dots on self-assembled silica nanospheres. Appl. Phys. Lett. 87, 141909–141911 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., Sargent, E.H.: Utrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006). (Letter to Editor)ADSCrossRefGoogle Scholar
  48. 48.
    McDonald, S., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J.D., Levina, L., Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mat. 4, 138–142 (2005). (Letter to Editor)ADSCrossRefGoogle Scholar
  49. 49.
    Boberl, M., Kovalenko, M.V., Pillwein, G., Brunthaler, G., Heiss, W.: Quantum dot nanocolumn photodetectors for light detection in the infrared. Appl. Phys. Lett. 92, 261113-1-3 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    Liao, S., Sun, K., Dutta, M., Stroscio, M.A.: Three-color photodetector based on quantum dots and resonant-tunneling diodes coupled with conductive polymers. Solid-State Electron. 54, 1066–1070 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    Nozik, A.J.: Quantum dot solar cells. Physica E 14, 115–120 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    Boudreaux, D.S., Williams, F., Nozik, A.J.: Hot carrier injection at semiconductor-electrolyte junctions. J. Appl. Phys. 51, 2158–2163 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    Benistry, H.: Reduced electron-phonon relaxation rates in quantum box systems: theoretical analysis. Phys. Rev. B 51, 13281–13293 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    Stroscio, M.A., Dutta, M.: Phonons in nanostructures. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  55. 55.
    Hagen, J., Schaffrath, W., Otschik, P., Fink, R., Bacher, A., Schmidt, H., Haarer, D.: Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth. Met. 89, 215–220 (1997)CrossRefGoogle Scholar
  56. 56.
    Arango, A.C., Carter, S.A., Brock, P.J.: Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Appl. Phys. Lett. 74, 1698–1700 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)ADSCrossRefGoogle Scholar
  58. 58.
    O’Regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)ADSCrossRefGoogle Scholar
  59. 59.
    Kroeze, E., Hirata, N., Schmidt-Mende, L., Orizu, C., Ogier, S.D., Carr, K., Gratzel, M., Durrant, J.R.: Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors. Adv. Funct. Mater. 16, 1832–1838 (2006)CrossRefGoogle Scholar
  60. 60.
    Suraprapapich, S., Thainoi, S., Kanjanachuchai, S., Panyakeow, S.: Quantum dot integration in heterostructure solar cells. Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006)CrossRefGoogle Scholar
  61. 61.
    Ruangdet, S., Thainoi, S., Kanajnachuchai, S., Panyakeow, S.: Improvement of PV performance by using multi-stacked high density InAs quantum dot molecules. In: IEEE Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, pp. 225–228. Waikoloa 1-4244-0016-3 (2006)Google Scholar
  62. 62.
    Marti, A., Cuadra, L., Luque, A.: Partial filling of a quantum dot intermediate band for solar cells. IEE Trans. Electron Devices 48, 2394–2399 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    Luque, A., Marti, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    Luque, A., Marti, A.: Recent progress in intermediate band solar cells. In: IEEE Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, pp. 49–52. Waikoloa 1-4244-0016-3 (2006)Google Scholar
  65. 65.
    Werner, J.H., Kodolinski, S., Queisser, H.J.: Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 72, 3851–3854 (1994)ADSCrossRefGoogle Scholar
  66. 66.
    Rao, A., Wilson, M.W.B., Hodgkiss, J.M., Albert-Seifried, S., Bassler, H., Friend, R.H.: Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 12698–12703 (2010)CrossRefGoogle Scholar
  67. 67.
    Wu, T.C., Biswas, S., Dutta, M., Stroscio, M.A.: Quantum dot based aptamer beacon for detection of potassium ions. IEEE Trans. Nanotechnol. 10(5), 991–995 (2011) ADSCrossRefGoogle Scholar
  68. 68.
    Brenneman, K.L., Sen, B., Stroscio, M.A., Dutta, M.: Aptamer-based optical bionano sensor for mercury(II) ions. In: IEEE Nanotechnology Materials and Devices Conference Proceedings, Monterey CA, 12–15 Oct 2010Google Scholar
  69. 69.
    Ono, A., Togashi, H.: Highly selective oligonucleotide-based Sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. 43, 4300–4302 (2004)CrossRefGoogle Scholar
  70. 70.
    Yun, C.S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., Hopkins, B., Reich, N.O., Strouse, G.F.: Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc. 127, 3115–3119 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Zhiping Wang
    • 1
    • 5
  • Nanzhu Zhang
    • 1
  • Kimber Brenneman
    • 3
  • Tsai Chin Wu
    • 3
  • Hyeson Jung
    • 1
  • Sushmita Biswas
    • 1
  • Banani Sen
    • 1
  • Kitt Reinhardt
    • 4
  • Sicheng Liao
    • 2
  • Michael A. Stroscio
    • 1
    • 2
    • 3
  • Mitra Dutta
    • 1
    • 2
  1. 1.Electrical and Computer Engineering DepartmentUniversity of Illinois at Chicago (UIC)ChicagoUSA
  2. 2.Physics DepartmentUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Bioengineering DepartmentUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Physics and Electronics DirectorateAir Force Office of Scientific ResearchArlingtonUSA
  5. 5.Department of PhysicsInner Mongolia UniversityHohhotChina

Personalised recommendations