Organization Principles in Genetic Interaction Networks


Understanding how genetic modifications, individual or in combinations, affect phenotypes is a challenge common to several areas of biology, including human genetics, metabolic engineering, and evolutionary biology. Much of the complexity of how genetic modifications produce phenotypic outcomes has to do with the lack of independence, or epistasis, between different perturbations: the phenotypic effect of one perturbation depends, in general, on the genetic background of previously accumulated modifications, i.e., on the network of interactions with other perturbations. In recent years, an increasing number of high-throughput efforts, both experimental and computational, have focused on trying to unravel these genetic interaction networks. Here we provide an overview of how systems biology approaches have contributed to, and benefited from, the study of genetic interaction networks. We focus, in particular, on results pertaining to the global multilevel properties of these networks, and the connection between their modular architecture and their functional and evolutionary significance.


  1. 1.
    Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028. doi:10.1038/msb4100073PubMedGoogle Scholar
  2. 2.
    Arigoni F, Talabot F, Peitsch M et al (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856. doi:10.1038/nbt0998-851PubMedGoogle Scholar
  3. 3.
    Arnqvist G, Dowling DK, Eady P et al (2010) Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64:3354–3363. doi:10.1111/j.1558-5646.2010.01135.xPubMedGoogle Scholar
  4. 4.
    Azevedo RBR, Lohaus R, Srinivasan S et al (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440:87–90. doi:10.1038/nature04488PubMedGoogle Scholar
  5. 5.
    Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T (2008) Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput Biol 4:e1000065. doi:10.1371/journal.pcbi.1000065PubMedGoogle Scholar
  6. 6.
    Bateson W, Mendel G (2009) Mendel’s principles of heredity: a defence, with a translation of Mendel’s original papers on hybridisation. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Beard DA, Babson E, Curtis E, Qian H (2004) Thermodynamic constraints for biochemical networks. J Theor Biol 228:327–333. doi:10.1016/j.jtbi.2004.01.008PubMedGoogle Scholar
  8. 8.
    Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543. doi:10.1038/nrg1637PubMedGoogle Scholar
  9. 9.
    Bershtein S, Segal M, Bekerman R et al (2006) Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444:929–932. doi:10.1038/nature05385PubMedGoogle Scholar
  10. 10.
    Bordbar A, Feist AM, Usaite-Black R et al (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body physiology. BMC Syst Biol 5:180. doi:10.1186/1752-0509-5-180PubMedGoogle Scholar
  11. 11.
    Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577. doi:10.1073/pnas.0408709102PubMedGoogle Scholar
  12. 12.
    Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755. doi:10.1126/science.1069516PubMedGoogle Scholar
  13. 13.
    Burch CL, Turner PE, Hanley KA (2003) Patterns of epistasis in RNA viruses: a review of the evidence from vaccine design. J Evol Biol 16:1223–1235. doi:10.1046/j.1420-9101.2003.00632.xPubMedGoogle Scholar
  14. 14.
    Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625. doi:10.1038/nrg1407PubMedGoogle Scholar
  15. 15.
    Carter GW, Rush CG, Uygun F et al (2010) A systems-biology approach to modular genetic complexity. Chaos 20:026102. doi:10.1063/1.3455183PubMedGoogle Scholar
  16. 16.
    Chait R, Craney A, Kishony R (2007) Antibiotic interactions that select against resistance. Nature 446:668–671. doi:10.1038/nature05685PubMedGoogle Scholar
  17. 17.
    Chiu H-C, Marx CJ, Segrè D Epistasis from functional dependence of fitness on underlying traits. SubmittedGoogle Scholar
  18. 18.
    Chou H-H, Chiu H-C, Delaney NF et al (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science (New York, NY) 332:1190–1192. doi:10.1126/science.1203799Google Scholar
  19. 19.
    Collins SR, Schuldiner M, Krogan NJ, Weissman JS (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol 7:R63. doi:10.1186/gb-2006-7-7-r63PubMedGoogle Scholar
  20. 20.
    Combarros O, Cortina-Borja M, Smith AD, Lehmann DJ (2009) Epistasis in sporadic Alzheimer’s disease. Neurobiol Aging 30:1333–1349. doi:10.1016/j.neurobiolaging.2007.11.027PubMedGoogle Scholar
  21. 21.
    Cooper TF, Remold SK, Lenski RE, Schneider D (2008) Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli. PLoS Genet 4:e35. doi:10.1371/journal.pgen.0040035PubMedGoogle Scholar
  22. 22.
    Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468. doi:10.1093/hmg/11.20.2463PubMedGoogle Scholar
  23. 23.
    Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327:425–431. doi:10.1126/science.1180823PubMedGoogle Scholar
  24. 24.
    Costanzo M, Baryshnikova A, Myers CL et al (2011) Charting the genetic interaction map of a cell. Curr Opin Biotechnol 22:66–74. doi:10.1016/j.copbio.2010.11.001PubMedGoogle Scholar
  25. 25.
    Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–592. doi:10.1038/nature03842PubMedGoogle Scholar
  26. 26.
    Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet 38:993–998. doi:10.1038/ng1856PubMedGoogle Scholar
  27. 27.
    Deutscher D, Meilijson I, Schuster S, Ruppin E (2008) Can single knockouts accurately single out gene functions? BMC Syst Biol 2:50. doi:10.1186/1752-0509-2-50PubMedGoogle Scholar
  28. 28.
    Draghi JA, Parsons TL, Plotkin JB (2011) Epistasis increases the rate of conditionally neutral substitution in an adapting population. Genetics 187:1139–52. doi:10.1534/genetics.110.125997PubMedGoogle Scholar
  29. 29.
    Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7):1298–1309. doi:10.1101/gr.2250904PubMedGoogle Scholar
  30. 30.
    Dumas M-E, Wilder SP, Bihoreau M-T et al (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39:666–672. doi:10.1038/ng2026PubMedGoogle Scholar
  31. 31.
    Edwards JS, Ibarra RU, Palsson BØ (2001) In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130. doi:10.1038/84379PubMedGoogle Scholar
  32. 32.
    Edwards JS, Covert M, Palsson BØ (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4:133–140. doi:10.1046/j.1462-2920.2002.00282.xPubMedGoogle Scholar
  33. 33.
    Eleftherohorinou H, Wright V, Hoggart C et al (2009) Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases. PLoS ONE 4:e8068. doi:10.1371/journal.pone.0008068PubMedGoogle Scholar
  34. 34.
    Elena SF, Solé RV, Sardanyés J (2010) Simple genomes, complex interactions: epistasis in RNA virus. Chaos 20:026106. doi:10.1063/1.3449300PubMedGoogle Scholar
  35. 35.
    Eronen V-P, Lindén RO, Lindroos A et al (2010) Genome-wide scoring of positive and negative epistasis through decomposition of quantitative genetic interaction fitness matrices. PLoS ONE 5:e11611. doi:10.1371/journal.pone.0011611PubMedGoogle Scholar
  36. 36.
    Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253. doi:10.1101/gr.234503.complexPubMedGoogle Scholar
  37. 37.
    Feist AM, Henry CS, Reed JL et al (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121. doi:10.1038/msb4100155PubMedGoogle Scholar
  38. 38.
    Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501. doi:10.1038/msb.2011.35PubMedGoogle Scholar
  39. 39.
    Förster J, Famili I, Palsson BØ, Nielsen J (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 7:193–202. doi:10.1089/153623103322246584PubMedGoogle Scholar
  40. 40.
    Frezza C, Zheng L, Folger O et al (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–228. doi:10.1038/nature10363PubMedGoogle Scholar
  41. 41.
    Gao H, Granka JM, Feldman MW (2010) On the classification of epistatic interactions. Genetics 184:827–837. doi:10.1534/genetics.109.111120PubMedGoogle Scholar
  42. 42.
    Greenspan RJ (2001) The flexible genome. Nat Rev Genet 2:383–387. doi:10.1038/35072018PubMedGoogle Scholar
  43. 43.
    Guo J, Tian D, McKinney BA, Hartman JL (2010) Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules. Chaos 20:026103. doi:10.1063/1.3455188PubMedGoogle Scholar
  44. 44.
    Harrison R, Papp B, Pál C et al (2007) Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci USA 104:2307–2312. doi:10.1073/pnas.0607153104PubMedGoogle Scholar
  45. 45.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52. doi:10.1038/35011540PubMedGoogle Scholar
  46. 46.
    Hayden EJ, Ferrada E, Wagner A (2011) Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474:92–95. doi:10.1038/nature10083PubMedGoogle Scholar
  47. 47.
    Herrgård MJ, Swainston N, Dobson P et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26:1155–1160. doi:10.1038/nbt1492PubMedGoogle Scholar
  48. 48.
    Hunter KW, Crawford NPS (2008) The future of mouse QTL mapping to diagnose disease in mice in the age of whole-genome association studies. Ann Rev Genet 42:131–141. doi:10.1146/annurev.genet.42.110807.091659PubMedGoogle Scholar
  49. 49.
    Imielinski M, Belta C (2008) Exploiting the pathway structure of metabolism to reveal high-order epistasis. BMC Syst Biol 2:40. doi:10.1186/1752-0509-2-40PubMedGoogle Scholar
  50. 50.
    Imielinski M, Belta C (2010) Deep epistasis in human metabolism. Chaos 20:026104. doi:10.1063/1.3456056Google Scholar
  51. 51.
    Imielinski M, Klitgord N, Belta C (2008) Investigating the genomic basis of metabolic robustness through in silico flux analysis. IEEE Conf Decis Contr 47:793–798. doi:10.1109/cdc.2008.4739459Google Scholar
  52. 52.
    Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14:491–496. doi:10.1016/j.copbio.2003.08.001PubMedGoogle Scholar
  53. 53.
    Kaufman A, Keinan A, Meilijson I et al (2005) Quantitative analysis of genetic and neuronal multi-perturbation experiments. PLoS Comput Biol 1:e64. doi:10.1371/journal.pcbi.0010064PubMedGoogle Scholar
  54. 54.
    Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science (New York, NY) 330:1355–1358. doi:10.1126/science.1193990Google Scholar
  55. 55.
    Kelley R, Ideker T (2005) Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 23:561–566. doi:10.1038/nbt1096PubMedGoogle Scholar
  56. 56.
    Khan AI, Dinh DM, Schneider D et al (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332:1193–1196. doi:10.1126/science.1203801PubMedGoogle Scholar
  57. 57.
    Khosla C (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2:1019–1025. doi:10.1038/nrd1256PubMedGoogle Scholar
  58. 58.
    Kishony R, Leibler S (2003) Environmental stresses can alleviate the average deleterious effect of mutations. J Biol 2(2):14. doi:10.1186/1475-4924-2-14PubMedGoogle Scholar
  59. 59.
    Klamt S, Gilles ED (2004) Minimal cut sets in biochemical reaction networks. Bioinformatics 20:226–234. doi:10.1093/bioinformatics/btg395PubMedGoogle Scholar
  60. 60.
    Klamt S, Haus U-U, Theis F (2009) Hypergraphs and cellular networks. PLoS Comput Biol 5:e1000385. doi:10.1371/journal.pcbi.1000385PubMedGoogle Scholar
  61. 61.
    Kliebenstein D (2009) Advancing genetic theory and application by metabolic quantitative trait loci analysis. Plant Cell 21:1637–1646. doi:10.1105/tpc.109.067611PubMedGoogle Scholar
  62. 62.
    Klitgord N, Segrè D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6:e1001002. doi:10.1371/journal.pcbi.1001002PubMedGoogle Scholar
  63. 63.
    Klitgord N, Segrè D (2011) Ecosystems biology of micrbial metabolism. Curr Opin Biotechnol 22:541–546. doi:10.1016/j.copbio.2011.04.018PubMedGoogle Scholar
  64. 64.
    Koffas M, Roberge C, Lee K, Stephanopoulos G (1999) Metabolic engineering. Ann Rev Biomed Eng 1:535–557. doi:10.1002/biot.201100289Google Scholar
  65. 65.
    Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440. doi:10.1038/336435a0PubMedGoogle Scholar
  66. 66.
    Kondrashov FA, Kondrashov AS (2001) Multidimensional epistasis and the disadvantage of sex. PNAS 98:12089–12092. doi:10.1073/pnas.211214298PubMedGoogle Scholar
  67. 67.
    Kvitek DJ, Sherlock G (2011) Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7:e1002056. doi:10.1371/journal.pgen.1002056PubMedGoogle Scholar
  68. 68.
    Lehár J, Krueger AS, Zimmermann G, Borisy A (2008) High-order combination effects and biological robustness. Mol Syst Biol 4:215. doi:10.1038/msb.2008.51PubMedGoogle Scholar
  69. 69.
    Lehár J, Krueger AS, Avery W et al (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27:659–66. doi:10.1038/nbt.1549PubMedGoogle Scholar
  70. 70.
    Lehman N (2008) The molecular underpinnings of genetic phenomena. Heredity 100:6–12. doi:10.1038/sj.hdy.6801053PubMedGoogle Scholar
  71. 71.
    Li F, Long T, Lu Y et al (2004) The yeast cell-cycle network is robustly designed. PNAS 101:4781–4786. doi:10.1073/pnas.0305937101PubMedGoogle Scholar
  72. 72.
    Lisec J, Meyer RC, Steinfath M et al (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972. doi:10.1111/j.1365-313X.2007.03383.xPubMedGoogle Scholar
  73. 73.
    MacCarthy T, Bergman A (2007) Coevolution of robustness, epistasis, and recombination favors asexual reproduction. PNAS 104:12801–12806. doi:10.1073/pnas.0705455104PubMedGoogle Scholar
  74. 74.
    Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5:264–276. doi:10.1016/j.ymben.2003.09.002PubMedGoogle Scholar
  75. 75.
    Mani R, St Onge RP, Hartman JL et al (2008) Defining genetic interaction. PNAS 105:3461–3466. doi:10.1073/pnas.0712255105PubMedGoogle Scholar
  76. 76.
    Martin G, Elena SF, Lenormand T (2007) Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nat Genet 39:555–560. doi:10.1038/ng1998PubMedGoogle Scholar
  77. 77.
    Michaut M, Baryshnikova A, Costanzo M et al (2011) Protein complexes are central in the yeast genetic landscape. PLoS Comput Biol 7:e1001092. doi:10.1371/journal.pcbi.1001092PubMedGoogle Scholar
  78. 78.
    Mitchison NA, Rose AM (2011) Epistasis: the key to understanding immunological disease? Eur J Immunol 41:2152–2154. doi:10.1002/eji.201141811PubMedGoogle Scholar
  79. 79.
    Mo ML, Palsson BO, Herrgård MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3:37. doi:10.1186/1752-0509-3-37PubMedGoogle Scholar
  80. 80.
    Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56:73–82. doi:10.1159/000073735PubMedGoogle Scholar
  81. 81.
    Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14. doi:10.1038/ng0105-13PubMedGoogle Scholar
  82. 82.
    Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays 27:637–646. doi:10.1002/bies.20236PubMedGoogle Scholar
  83. 83.
    Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. doi:10.1038/nbt.1614PubMedGoogle Scholar
  84. 84.
    Orth JD, Conrad TM, Na J et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism – 2011. Mol Syst Biol 7:1–9. doi:10.1038/msb.2011.65Google Scholar
  85. 85.
    Papp B, Pál C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429:661–664. doi:10.1038/nature02636PubMedGoogle Scholar
  86. 86.
    Parsons AB, Brost RL, Ding H et al (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69. doi:10.1038/nbt919PubMedGoogle Scholar
  87. 87.
    Penrod N, Greene CS, Granizo-MacKenzie D, Moore JH (2010) Artificial immune systems for epistasis analysis in human genetics. Lect Notes Comp Sci 6023:194–204. doi:10.1007/978-3-642-12211-8_17Google Scholar
  88. 88.
    Phillips PC (1998) The language of gene interaction. Genetics 1171:1167–1171Google Scholar
  89. 89.
    Phillips PC (2008) Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev Genet 9:855–867. doi:10.1038/nrg2452PubMedGoogle Scholar
  90. 90.
    Poelwijk FJ, Tanase-Nicola S, Kiviet DJ, Tans SJ (2011) Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J Theor Biol 272:141–144. doi:10.1016/j.jtbi.2010.12.015PubMedGoogle Scholar
  91. 91.
    Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinformatics 10:435–449. doi:10.1093/bib/bbp011PubMedGoogle Scholar
  92. 92.
    Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119. doi:10.1038/msb4100162PubMedGoogle Scholar
  93. 93.
    Schuldiner M, Collins SR, Thompson NJ et al (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–519. doi:10.1016/j.cell.2005.08.031PubMedGoogle Scholar
  94. 94.
    Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:15112–15117. doi:10.1073/pnas.232349399PubMedGoogle Scholar
  95. 95.
    Segrè D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nature Genet 37:77–83. doi:10.1038/ng1489PubMedGoogle Scholar
  96. 96.
    Shao H, Burrage LC, Sinasac DS et al (2008) Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. PNAS 105:19910–19914. doi:10.1073/pnas.0810388105PubMedGoogle Scholar
  97. 97.
    Shlomi T, Herrgård MJ, Portnoy V et al (2007) Systematic condition-dependent annotation of metabolic genes. Genome Res 17:1626–1633. doi:10.1101/gr.6678707PubMedGoogle Scholar
  98. 98.
    Snitkin ES, Segrè D (2008) Optimality criteria for the prediction of metabolic fluxes in yeast mutants. Genome Inform 20:123–34; International Conference on Genome InformaticsGoogle Scholar
  99. 99.
    Snitkin ES, Segrè D (2011) Epistatic Interaction Maps Relative to Multiple Metabolic Phenotypes. PLoS Genet 7(2):e1001294. doi:20.1371/journal.pgen.1001294PubMedGoogle Scholar
  100. 100.
    Snitkin ES, Dudley AM, Janse DM et al (2008) Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol 9:R140. doi:10.1186/gb-2008-9-9-r140PubMedGoogle Scholar
  101. 101.
    Stelling J, Sauer U, Szallasi Z et al (2004) Robustness of cellular functions. Cell 118:675–685. doi:10.1016/j.cell.2004.09.008PubMedGoogle Scholar
  102. 102.
    Szappanos B, Kovács K, Szamecz B et al (2011) An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet 43:656–662. doi:10.1038/ng.846PubMedGoogle Scholar
  103. 103.
    Tong AHY, Evangelista M, Parsons AB et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368. doi:10.1126/science.1065810PubMedGoogle Scholar
  104. 104.
    Tong AHY, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813. doi:10.1126/science.1091317PubMedGoogle Scholar
  105. 105.
    Trindade S, Sousa A, Xavier KB et al (2009) Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet 5:e1000578. doi:10.1371/journal.pgen.1000578PubMedGoogle Scholar
  106. 106.
    Varma A, Palsson BØ (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731. doi:10.1128/AEM.00027-0254PubMedGoogle Scholar
  107. 107.
    de Visser JAGM, Hermisson J, Wagner GP et al (2003) Perspective: evolution and detection of genetic robustness. Evolution 57(9):1959–1972. doi:10.1111/j.0014-3820.2003.tb00377.xPubMedGoogle Scholar
  108. 108.
    de Visser JAGM, Cooper TF, Elena SF (2011) The causes of epistasis. Proc Roy Soc B. 278: 3617–3624. doi:10.1098/rspb.2011.1537Google Scholar
  109. 109.
    Wagner A (2005) Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27:176–188. doi:10.1002/bies.20170PubMedGoogle Scholar
  110. 110.
    Weinreich DM, Watson RA, Chao L (2005) Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174. doi:10.1111/j.0014-3820.2005.tb01768.xPubMedGoogle Scholar
  111. 111.
    Weinreich DM, Delaney NF, DePristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111. doi:10.1126/science.1123539PubMedGoogle Scholar
  112. 112.
    Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:1–7. doi:10.1038/msb.2010.66Google Scholar
  113. 113.
    Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906. doi:10.1126/science.285.5429.901Google Scholar
  114. 114.
    Wolf JB, Brodie ED, Wade JM (2000) Epistasis and the evolutionary process. Oxford University Press, New YorkGoogle Scholar
  115. 115.
    Xu C, Li Z, Xu S (2005) Joint mapping of quantitative trait loci for multiple binary characters. Genetics 169:1045–1059. doi:10.1534/genetics.103.019406PubMedGoogle Scholar
  116. 116.
    Yeh P, Tschumi AI, Kishony R (2006) Functional classification of drugs by properties of their pairwise interactions. Nat Genet 38:489–494. doi:10.1038/ng1755PubMedGoogle Scholar
  117. 117.
    Yeh PJ, Hegreness MJ, Aiden AP, Kishony R (2011) Drug interactions and the evolution of anibiotic resistance. Nat Rev Microbiol 11:330. doi:10.1038/nrmicro2133Google Scholar
  118. 118.
    You L, Yin J (2002) Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage t7. Genetics 160:1273–1281PubMedGoogle Scholar
  119. 119.
    Young ND (1996) QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopathol 34:479–501. doi:10.1146/annurev.phyto.34.1.479Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Graduate Program in BioinformaticsBoston UniversityBostonUSA
  2. 2.Department of Biology and Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations