Skip to main content

Global Discovery of Small Noncoding RNAs in Pathogenic Yersinia Species

  • Conference paper
  • First Online:
Advances in Yersinia Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

Small noncoding RNAs (sRNAs) function as regulatory elements in both eukaryotes and bacteria. Trans-acting bacterial sRNAs posttranscriptionally regulate gene expression by base pairing with target mRNAs, which often leads to changes in translation efficiency and/or stability of the transcript. Bioinformatic search algorithms along with a variety of experimental approaches have become increasingly useful for the discovery of sRNAs and their mRNA targets. Our laboratory and others recently demonstrated that Hfq, a protein chaperone of sRNAs in bacteria, is required for the full virulence of both Yersinia pestis, the bacterium that causes the disease plague, and the genetically related gastrointestinal pathogen Yersinia pseudotuberculosis. This led us to pursue the first global identification and analysis of sRNAs in pathogenic Yersinia species. We have identified 150 previously unannotated sRNAs expressed by Y. pseudotuberculosis when cultured in vitro at either 26°C or 37°C, the majority of which are Yersinia-specific. The deletion of multiple Yersinia-specific sRNAs from either Y. pseudotuberculosis or Y. pestis leads to the attenuation of these pathogens in mouse models of infection. In addition, we have identified the mRNA targets controlled by one of these virulence-associated sRNAs, suggesting potential new virulence determinants in Y. pseudotuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akama T, Suzuki K, Tanigawa K et al (2009) Whole-genome tiling array analysis of Mycobacterium leprae RNA reveals high expression of pseudogenes and noncoding regions. J Bacteriol 191:3321–3327

    Article  PubMed  CAS  Google Scholar 

  • Allocati N, Federici L, Masulli M et al (2009) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  PubMed  CAS  Google Scholar 

  • Arnvig KB, Young DB (2009) Identification of small RNAs in Mycobacterium tuberculosis. Mol Microbiol 73:397–408

    Article  PubMed  CAS  Google Scholar 

  • Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856

    Article  PubMed  CAS  Google Scholar 

  • Christiansen JK, Larsen MH, Ingmer H et al (2004) The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 186:3355–3362

    Article  PubMed  CAS  Google Scholar 

  • Coornaert A, Lu A, Mandin P et al (2010) MicA sRNA links the PhoP regulon to cell envelope stress. Mol Microbiol 76:467–479

    Article  PubMed  CAS  Google Scholar 

  • Delihas N (2003) Annotation and evolutionary relationships of a small regulatory RNA gene micF and its target ompF in Yersinia species. BMC Microbiol 3:13

    Article  PubMed  Google Scholar 

  • Fantappie L, Metruccio MM, Seib KL et al (2009) The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression. Infect Immun 77:1842–1853

    Article  PubMed  CAS  Google Scholar 

  • Faucher SP, Friedlander G, Livny J et al (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA 107:7533–7538

    Article  PubMed  CAS  Google Scholar 

  • Geisinger E, Adhikari RP, Jin R et al (2006) Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61:1038–1048

    Article  PubMed  CAS  Google Scholar 

  • Geng J, Song Y, Yang L et al (2009) Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 4:e6213

    Article  PubMed  Google Scholar 

  • Gopel Y, Luttmann D, Heroven AK et al (2011) Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res 39:1294–1309

    Article  PubMed  Google Scholar 

  • Gottesman S, Storz G (2010) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol. doi:doi:10.1101/cshperspect.a003798

  • Guillier M, Gottesman S (2006) Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol Microbiol 59:231–247

    Article  PubMed  CAS  Google Scholar 

  • Heroven AK, Bohme K, Rohde M et al (2008) A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 68:1179–1195

    Article  PubMed  CAS  Google Scholar 

  • Horler RS, Vanderpool CK (2009) Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence. Nucleic Acids Res 37:5465–5476

    Article  PubMed  CAS  Google Scholar 

  • Huntzinger E, Boisset S, Saveanu C et al (2005) Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24:824–835

    Article  PubMed  CAS  Google Scholar 

  • Karzai AW, Roche ED, Sauer RT (2000) The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Koo JT, Alleyne TM, Schiano CA et al (2011) Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific sRNAs required for virulence. Proc Natl Acad Sci USA 108:E709–17

    Google Scholar 

  • Kulesus RR, Diaz-Perez K, Slechta ES et al (2008) Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 76:3019–3026

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Shah P, Swiatlo E et al (2010) Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genomics 11:350

    Article  PubMed  Google Scholar 

  • Landt SG, Abeliuk E, McGrath PT et al (2008) Small non-coding RNAs in Caulobacter crescentus. Mol Microbiol 68:600–614

    Article  PubMed  CAS  Google Scholar 

  • Liu JM, Livny J, Lawrence MS et al (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37:e46

    Article  PubMed  Google Scholar 

  • Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101

    Article  PubMed  CAS  Google Scholar 

  • Livny J, Brencic A, Lory S et al (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34:3484–3493

    Article  PubMed  CAS  Google Scholar 

  • MacLean D, Jones JD, Studholme DJ (2009) Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296

    PubMed  Google Scholar 

  • Mandin P, Gottesman S (2009) A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol 72:551–565

    Article  PubMed  CAS  Google Scholar 

  • Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971

    Article  PubMed  CAS  Google Scholar 

  • McCullen CA, Benhammou JN, Majdalani N et al (2010) Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192:5559–5571

    Article  PubMed  CAS  Google Scholar 

  • Meibom KL, Forslund AL, Kuoppa K et al (2009) Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 77:1866–1880

    Article  PubMed  CAS  Google Scholar 

  • Moller T, Franch T, Udesen C et al (2002) Spot 42 RNA mediates discoordinate expression of the Escherichia coli galactose operon. Genes Dev 16:1696–1706

    Article  PubMed  CAS  Google Scholar 

  • Morfeldt E, Taylor D, von Gabain A et al (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14:4569–4577

    PubMed  CAS  Google Scholar 

  • Murphy ER, Payne SM (2007) RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect Immun 75:3470–3477

    Article  PubMed  CAS  Google Scholar 

  • Nakao H, Watanabe H, Nakayama S et al (1995) yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene (hfq). Mol Microbiol 18:859–865

    Article  PubMed  CAS  Google Scholar 

  • Okan NA, Bliska JB, Karzai AW (2006) A role for the SmpB-SsrA system in Yersinia pseudotuberculosis pathogenesis. PLoS Pathog 2:e6

    Article  PubMed  Google Scholar 

  • Okan NA, Mena P, Benach JL et al (2010) The smpB-ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague infection. Infect Immun 78:1284–1293

    Article  PubMed  CAS  Google Scholar 

  • Padalon-Brauch G, Hershberg R, Elgrably-Weiss M et al (2008) Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res 36:1913–1927

    Article  PubMed  CAS  Google Scholar 

  • Papenfort K, Pfeiffer V, Mika F et al (2006) SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol 62:1674–1688

    Article  PubMed  CAS  Google Scholar 

  • Passalacqua KD, Varadarajan A, Ondov BD et al (2009) Structure and complexity of a bacterial transcriptome. J Bacteriol 191:3203–3211

    Article  PubMed  CAS  Google Scholar 

  • Pichon C, Felden B (2005) Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci USA 102:14249–14254

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Pena E, Trevino J, Liu Z et al (2010) The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol Microbiol 78:1332–1347

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen AA, Johansen J, Nielsen JS et al (2009) A conserved small RNA promotes silencing of the outer membrane protein YbfM. Mol Microbiol 72:566–577

    Article  PubMed  CAS  Google Scholar 

  • Rowley G, Spector M, Kormanec J et al (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383–394

    Article  PubMed  CAS  Google Scholar 

  • Schiano CA, Bellows LE, Lathem WW (2010) The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 78:2034–2044

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Vogel J (2009) Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 12:536–546

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Darfeuille F, Plantinga TH et al (2007) A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21:2804–2817

    Article  PubMed  CAS  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  PubMed  CAS  Google Scholar 

  • Silvaggi JM, Perkins JB, Losick R (2006) Genes for small, noncoding RNAs under sporulation control in Bacillus subtilis. J Bacteriol 188:532–541

    Article  PubMed  CAS  Google Scholar 

  • Sittka A, Lucchini S, Papenfort K et al (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator Hfq. PLoS Genet 4:e1000163

    Article  Google Scholar 

  • Sonnleitner E, Sorger-Domenigg T, Madej MJ et al (2008) Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology 154:3175–3187

    Article  PubMed  CAS  Google Scholar 

  • Srivatsan A, Han Y, Peng J et al (2008) High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4:e1000139

    Article  PubMed  Google Scholar 

  • Tjaden B (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 36:W109–W113

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Arana A, Dussurget O, Nikitas G et al (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956

    Article  PubMed  CAS  Google Scholar 

  • Tramonti A, De Canio M, De Biase D (2008) GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 70:965–982

    PubMed  CAS  Google Scholar 

  • Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35:1018–1037

    Article  PubMed  CAS  Google Scholar 

  • Urbanowski ML, Stauffer LT, Stauffer GV (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 37:856–868

    Article  PubMed  CAS  Google Scholar 

  • Vockenhuber MP, Sharma CM, Statt MG et al (2011) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol 8:3

    Article  Google Scholar 

  • Vogel J, Papenfort K (2006) Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 9:605–611

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Sharma CM (2005) How to find small non-coding RNAs in bacteria. Biol Chem 386:1219–1238

    PubMed  CAS  Google Scholar 

  • Wadler CS, Vanderpool CK (2009) Characterization of homologs of the small RNA SgrS reveals diversity in function. Nucleic Acids Res 37:5477–5485

    Article  PubMed  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  PubMed  CAS  Google Scholar 

  • Yoder-Himes DR, Chain PS, Zhu Y et al (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA 106:3976–3981

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Wassarman KM, Rosenow C et al (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Trevis Alleyne for assistance with bioinformatics analysis of the deep sequencing data, Chelsea Schiano for contributing reagents, and Lauren Bellows for technical assistance. This work was sponsored by the Northwestern University Feinberg School of Medicine and the NIH/NIAID Regional Center of Excellence for Bio-defense and Emerging Infectious Diseases Research (RCE) Program. We also acknowledge membership within and support from the Region V “Great Lakes” RCE (NIH award U54 AI057153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyndham W. Lathem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Koo, J.T., Lathem, W.W. (2012). Global Discovery of Small Noncoding RNAs in Pathogenic Yersinia Species. In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_38

Download citation

Publish with us

Policies and ethics