Fimbrial Polyadhesins: Anti-immune Armament of Yersinia

Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 954)


The adhesive organelles play a pivotal role in the initiation of bacterial infections. The 3D structure of adhesin subunits bound to host-cell receptors and the final architecture of the fimbrial adhesive organelles of Gram-negative pathogens reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The F1, pH6 (Psa), and Myf antigens of Yersinia are the typical members of FGL (having a long F1–G1 loop) chaperone-assembled polyadhesins belonged to the γ3-monophyletic group. High-resolution structures of the F1 minifibers confirm that Yersinia pestis capsule is made of linearly polymerized Caf1 subunits and exploit the principle of donor-strand complementation for their polymerization. The F1 and pH6 polyadhesins contribute to the powerful anti-immune armament of Y. pestis and act in concert with the Yersinia type III secretion injectisome. The binding of F1 and pH6 polyadhesins to the specific host-cell receptors may lead to their massive aggregation that triggers suicidal proinflammatory responses.


Alveolar Epithelial Cell Pneumonic Plague Periplasmic Chaperone Bubonic Plague Pilus Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the European Commission/Research Executive Agency under a Marie Curie International Incoming Fellowship (235538) and a grant from the Academy of Finland (112900).


  1. Anderson KL, Billington J, Pettigrew D (2004a) An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 101:647–657CrossRefGoogle Scholar
  2. Anderson KL, Cota E, Simpson P et al (2004b) Complete resonance assignments of a ‘donor-strand complemented’ AfaE: the afimbrial adhesin from diffusely adherent E. coli. J Biomol NMR 29:409–410PubMedCrossRefGoogle Scholar
  3. Anisimov AP, Bakhteeva IV, Panfertsev EA et al (2009) The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice. J Med Microbiol 58:26–36PubMedCrossRefGoogle Scholar
  4. Ben-Efraim S, Aronson M, Bichowsky-Slomnicki L (1961) New antigenic component of Pasteurella pestis formed under specific conditions of pH and temperature. J Bacteriol 81:704–714PubMedGoogle Scholar
  5. Bork P, Holm L, Sander C (1994) The immunoglobulin fold: structural classification, sequence patterns and common core. J Mol Biol 242:309–320PubMedGoogle Scholar
  6. Cathelyn JS, Crosby SD, Lathem WW et al (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103:13514–13519PubMedCrossRefGoogle Scholar
  7. Chen TH, Elberg SS (1977) Scanning electron microscopic study of virulent Yersinia pestis and Yersinia pseudotuberculosis type 1. Infect Immun 15:972–977PubMedGoogle Scholar
  8. Choudhury D, Thompson A, Stojanoff V et al (1999) X-ray structure of the FimC-FimH chaperone–adhesin complex from uropathogenic Escherichia coli. Science 285:1061–1066PubMedCrossRefGoogle Scholar
  9. Cleri DJ, Vernaleo JR, Lombardi LJ et al (1997) Plague pneumonia disease caused by Yersinia pestis. Semin Respir Infect 12:12–23PubMedGoogle Scholar
  10. Cornelis GR (2010) The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery. Biol Chem 391:745–751PubMedCrossRefGoogle Scholar
  11. Cornelis GR, Wolf-Watz H (1997) The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23:861–867PubMedCrossRefGoogle Scholar
  12. Cota E, Chen HA, Anderson KL et al (2004) Letter to the editor: complete resonance assignments of the ‘donor-strand complemented’ AfaD: the afimbrial invasin from diffusely adherent E. coli. J Biomol NMR 29:411–412PubMedCrossRefGoogle Scholar
  13. Cota E, Jones C, Simpson P et al (2006) The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol 62:356–366PubMedCrossRefGoogle Scholar
  14. De Jong B, Ekdahl B (2006) The comparative burden of salmonellosis in the European Union member states, associated and candidate countries. BMC Public Health 6:4PubMedCrossRefGoogle Scholar
  15. Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20:2361–2370PubMedCrossRefGoogle Scholar
  16. DeLano WL (2002) Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12:14–20PubMedCrossRefGoogle Scholar
  17. Diepold A, Amstutz M, Abel S et al (2010) Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 29:1928–1940PubMedCrossRefGoogle Scholar
  18. Du Y, Rosqvist R, Forsberg Å (2002) Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 70:1453–1460PubMedCrossRefGoogle Scholar
  19. Dutt AK, Akhtar R, McVeigh M (2006) Surat plague of 1994 reexamined. Southeast Asian J Trop Med Public Health 37:755–760PubMedGoogle Scholar
  20. Felek S, Tsang TM, Krukonis ES (2010) Three Yersinia pestis adhesins facilitate Yop delivery to eukaryotic cells and contribute to plague virulence. Infect Immun 78:4134–4150PubMedCrossRefGoogle Scholar
  21. Fronzes R, Remaut H, Waksman G (2008) Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 27:2271–2280PubMedCrossRefGoogle Scholar
  22. Galván EM, Chen H, Schifferli DM (2006) The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 75:1272–1279PubMedCrossRefGoogle Scholar
  23. Galván EM, Nair MK, Chen H et al (2010) Biosafety level 2 model of pneumonic plague and protection studies with F1 and Psa. Infect Immun 78:3443–3453PubMedCrossRefGoogle Scholar
  24. Galyov EE, Smirnov OY, Karlyshev AV et al (1990) Nucleotide sequence of the Yersinia pestis gene encoding F1 antigen and the primary structure of the protein. FEBS Lett 277:230–232PubMedCrossRefGoogle Scholar
  25. Galyov EE, Karlyshev AV, Chernovskaya TV et al (1991) Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone PapD of Escherichia coli. FEBS Lett 286:79–82PubMedCrossRefGoogle Scholar
  26. Giske CG, Monnet DL, Cars O et al (2008) Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Chemother 52:813–821PubMedCrossRefGoogle Scholar
  27. Gupta ML, Sharma A (2007) Pneumonic plague, Northern India, 2002. Emerg Infect Dis 13:664–666PubMedCrossRefGoogle Scholar
  28. Huang XZ, Lindler LE (2004) The pH6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun 72:7212–7219PubMedCrossRefGoogle Scholar
  29. Hung DL, Knight SD, Woods RM et al (1996) Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792–3805PubMedGoogle Scholar
  30. Iriarte M, Cornelis GR (1995) MyfF, an element of the network regulating the synthesis of fibrillae in Yersinia enterocolitica. J Bacteriol 177:738–744PubMedGoogle Scholar
  31. Iriarte M, Vanooteghem JC, Delor I et al (1993) The Myf fibrillae of Yersinia enterocolitica. Mol Microbiol 9:507–520PubMedCrossRefGoogle Scholar
  32. Jacob-Dubuisson F, Striker R, Hultgren SJ (1994) Chaperone assisted self-assembly of pili independent of cellular energy. J Biol Chem 269:12447–12455PubMedGoogle Scholar
  33. Jedrzejczak R, Dauter Z, Dauter M et al (2006) Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with swapped beta-tails. Acta Crystallogr D Biol Crystallogr 62:157–164PubMedCrossRefGoogle Scholar
  34. Karlyshev AV, Galyov EE, Abramov VM et al (1992a) caf1R gene and its role in the regulation of capsule formation of Y. pestis. FEBS Lett 305:37–40PubMedCrossRefGoogle Scholar
  35. Karlyshev AV, Galyov EE, Smirnov OY et al (1992b) A new gene of the f1 operon of Y. pestis involved in the capsule biogenesis. FEBS Lett 297:77–80PubMedCrossRefGoogle Scholar
  36. Karlyshev AV, Galyov EE, Smirnov OY et al (1994) Structure and regulation of a gene cluster involved in capsule formation of Y. pestis. In: Op den Kamp JAF (ed) Biological membranes: structure, biogenesis and dynamic. Springer, New YorkGoogle Scholar
  37. Knight SD, Berglund J, Choudhury D (2000) Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis. Curr Opin Chem Biol 4: 653–660PubMedCrossRefGoogle Scholar
  38. Korotkova N, Cota E, Lebedin Y et al (2006a) A subfamily of Dr adhesions of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembrionic antigen. J Biol Chem 281: 29120–29130PubMedCrossRefGoogle Scholar
  39. Korotkova N, Le Trong I, Samudrala R et al (2006b) Crystal structure and mutational analysis of the DaaE adhesin of Escherichia coli. J Biol Chem 281:22367–22377PubMedCrossRefGoogle Scholar
  40. Korotkova N, Yang Y, Le Trong I et al (2008a) Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Mol Microbiol 67:420–434PubMedCrossRefGoogle Scholar
  41. Korotkova N, Yarova-Yarovaya Y, Tchesnokova V et al (2008b) Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 76:3869–3880PubMedCrossRefGoogle Scholar
  42. Kumar S, Balakrishna K, Agarwal GS et al (2009) Th1-type immune response to infection by pYV-cured phoP-phoQ null mutant of Yersinia pseudotuberculosis is defective in mouse model. Antonie Van Leeuwenhoek 95:91–100PubMedCrossRefGoogle Scholar
  43. Lemaitre N, Sebbane F, Long D et al (2006) Yersinia pestis YopJ suppresses tumour necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect Immun 74: 5126–5131PubMedCrossRefGoogle Scholar
  44. Li B, Jiang L, Song Q et al (2005) Protein microarray for profiling antibody responses to Yersinia pestis live vaccine. Infect Immun 73:3734–3739PubMedCrossRefGoogle Scholar
  45. Li Y, Cui Y, Hauck Y et al (2009a) Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS One 4:e6000PubMedCrossRefGoogle Scholar
  46. Li B, Zhou L, Guo J et al (2009b) High-throughput identification of new protective antigens from Yersinia pestis live vaccine by ELISPOT. Infect Immun 77:4356–4361PubMedCrossRefGoogle Scholar
  47. Lindler LE, Tall BD (1993) Yersinia pestis pH6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8:311–324PubMedCrossRefGoogle Scholar
  48. Lindler LE, Klempner MS, Straley SC (1990) Yersinia pestis pH6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58:2569–2577PubMedGoogle Scholar
  49. Liu F, Chen H, Galván EM et al (2006) Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect Immun 74:5636–5644PubMedCrossRefGoogle Scholar
  50. Makoveichuk E, Cherepanov P, Lundberg S et al (2003) pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 44:320–330PubMedCrossRefGoogle Scholar
  51. Marketon MM, Depaolo RW, Debord KL et al (2005) Plague bacteria target immune cells during infection. Science 309:1739–1741PubMedCrossRefGoogle Scholar
  52. Nishiyama M, Horst R, Eidam OT et al (2005) Structural basis of chaperone–subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J 24:1–12CrossRefGoogle Scholar
  53. Payne D, Tatham D, Williamson ED et al (1998) pH6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun 66: 4545–4548PubMedGoogle Scholar
  54. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66PubMedGoogle Scholar
  55. Pettigrew D, Anderson KL, Billington J et al (2004) High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem 279:46851–46857PubMedCrossRefGoogle Scholar
  56. Phan G, Remaut H, Wang T et al (2011) Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474:49–53PubMedCrossRefGoogle Scholar
  57. Pujol C, Klein KA, Romanov GA et al (2009) Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun 77:2251–2261PubMedCrossRefGoogle Scholar
  58. Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med 365(8): 709–717PubMedCrossRefGoogle Scholar
  59. Remaut H, Rose RJ, Hannan TJ et al (2006) Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted β strand displacement mechanism. Mol Cell 22:831–842PubMedCrossRefGoogle Scholar
  60. Remaut H, Tang C, Henderson N et al (2008) Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133:640–652PubMedCrossRefGoogle Scholar
  61. Runco LM, Myrczek S, Bliska JB et al (2008) Biogenesis of the fraction 1 capsule and analysis of the ultrastructure of Yersinia pestis. J Bacteriol 190:3381–3385PubMedCrossRefGoogle Scholar
  62. Sauer FG, Futterer K, Pinkner JS et al (1999) Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061PubMedCrossRefGoogle Scholar
  63. Sauer FG, Barnhart M, Choudhury D et al (2000) Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 10:548–556PubMedCrossRefGoogle Scholar
  64. Sauer FG, Pinkner JS, Waksman G et al (2002) Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111:543–551PubMedCrossRefGoogle Scholar
  65. Sauer FG, Remaut H, Hultgren SJ et al (2004) Fiber assembly by the chaperone–usher pathway. Biochim Biophys Acta 1694:259–267PubMedCrossRefGoogle Scholar
  66. Sebbane F, Lemaitre N, Sturdevant DE et al (2006) Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci U S A 103:11766–11771PubMedCrossRefGoogle Scholar
  67. Sebbane F, Jarrett C, Gardner D et al (2009) The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun 77:1222–1229PubMedCrossRefGoogle Scholar
  68. Sharma RK, Sodhi A, Batra HV (2005a) Involvement of c-Jun N-terminal kinase in rF1 mediated activation of murine peritoneal macrophages in vitro. J Clin Immunol 3:215–223CrossRefGoogle Scholar
  69. Sharma RK, Sodhi A, Batra HV et al (2005b) Phosphorylation of p42/44 MAP kinase is required for rF1-induced activation of murine peritoneal macrophages. Mol Immunol 42:1385–1392PubMedCrossRefGoogle Scholar
  70. Smiley ST (2008a) Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines 7:209–221PubMedCrossRefGoogle Scholar
  71. Smiley ST (2008b) Immune defense against pneumonic plague. Immunol Rev 225:256–271PubMedCrossRefGoogle Scholar
  72. Sodhi A, Sharma RK, Batra HV et al (2004) Recombinant fraction 1 protein of Yersinia pestis activates murine peritoneal macrophages in vitro. Cell Immunol 229:52–61PubMedCrossRefGoogle Scholar
  73. Soliakov A, Harris JR, Watkinson A et al (2010) The structure of Yersinia pestis Caf1 polymer in free and adjuvant bound states. Vaccine 28:5746–5754PubMedCrossRefGoogle Scholar
  74. Soto GE, Hultgren SJ (1999) Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071PubMedGoogle Scholar
  75. Thanassi DG, Saulino ET, Hultgren SJ (1998) The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1: 223–231PubMedCrossRefGoogle Scholar
  76. Velan B, Bar-Haim E, Zauberman A et al (2006) Discordance in the effects of Yersinia pestis on dendritic cell functions: induction of maturation and paralysis of migration. Infect Immun 74:6365–6376PubMedCrossRefGoogle Scholar
  77. Verger D, Bullitt E, Hultgren SJ et al (2007) Crystal structure of the P pilus rod subunit PapA. PLoS Pathog 3:e73PubMedCrossRefGoogle Scholar
  78. Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89PubMedCrossRefGoogle Scholar
  79. Virdi JS, Sachdeva P (2005) Molecular heterogeneity in Yersinia enterocolitica and Y. enterocolitica-like ­species—implications for epidemiology, typing and taxonomy. FEMS Immunol Med Microbiol 45:1–10PubMedCrossRefGoogle Scholar
  80. Waksman G, Hultgren SJ (2009) Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774PubMedCrossRefGoogle Scholar
  81. Wang H, Cui Y, Wang Z et al (2011) A dog-associated primary pneumonic plague in Qinghai Province, China. Clin Infect Dis 52:185–190PubMedCrossRefGoogle Scholar
  82. Welkos SL, Andrews GP, Lindler LE et al (2004) Mu dI1(Ap lac) mutagenesis of Yersinia pestis plasmid pFra and identification of temperature-regulated loci associated with virulence. Plasmid 51:1–11PubMedCrossRefGoogle Scholar
  83. Williamson ED (2009) Plague. Vaccine 27:D56–D60PubMedCrossRefGoogle Scholar
  84. Yang Y, Isberg RR (1997) Transcriptional regulation of the Yersinia pseudotuberculosis pH6 antigen adhesin by two envelope-associated components. Mol Microbiol 24:499–510PubMedCrossRefGoogle Scholar
  85. Zav’yalov VP, Chernovskaya TV, Navolotskaya EV et al (1995a) Specific high affinity binding of human interleukin 1β by Caf1A usher protein of Yersinia pestis. FEBS Lett 371:65–68PubMedCrossRefGoogle Scholar
  86. Zav’yalov VP, Zav’yalova GA, Denesyuk AI et al (1995b) Modelling of steric structure of a periplasmic molecular chaperone Caf1M of Yersinia pestis, a prototype member of a subfamily with characteristic structural and functional features. FEMS Immunol Med Microbiol 11:19–24PubMedCrossRefGoogle Scholar
  87. Zav’yalov VP, Abramov VM, Cherepanov PG et al (1996) pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 14:53–57PubMedCrossRefGoogle Scholar
  88. Zav’yalov VP, Chernovskaya TV, Chapman DAG et al (1997) Influence of the conserved disulphide bond exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like periplasmic molecular chaperone, Caf1M, of Yersinia pestis. Biochem J 324:571–578PubMedGoogle Scholar
  89. Zav’yalov V, Zavialov A, Zav’yalova G et al (2010) Adhesive organelles of Gram negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 34:317–378PubMedCrossRefGoogle Scholar
  90. Zavialov AV, Knight SD (2007) A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M. Mol Microbiol 64:153–164PubMedCrossRefGoogle Scholar
  91. Zavialov AV, Kersley J, Korpela T et al (2002) Donor strand complementation mechanism in the biogenesis of non-pilus systems. Mol Microbiol 45:983–995PubMedCrossRefGoogle Scholar
  92. Zavialov AV, Berglund J, Pudney AF et al (2003) Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113:587–596PubMedCrossRefGoogle Scholar
  93. Zavialov AV, Tischenko VM, Fooks LJ et al (2005) Resolving the energy paradox of chaperone-mediated fibre assembly. Biochem J 389:685–694PubMedCrossRefGoogle Scholar
  94. Zavialov A, Zav’yalova G, Korpela T et al (2007) FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 31:478–514PubMedCrossRefGoogle Scholar
  95. Zhou H, Monack DM, Kayagaki N et al (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kB activation. J Exp Med 202:1327–1332PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Joint Biotechnology Laboratory, Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations