Skip to main content

Bacteriophages Capable of Lysing Yersinia pestis and Yersinia pseudotuberculosis: Efficiency of Plating Tests and Identification of Receptors in Escherichia coli K-12

  • Conference paper
  • First Online:
Advances in Yersinia Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 954))

Abstract

There are several bacteriophages (phages) utilized for diagnosis of plague and pseudotuberculosis. Some of them could be used for antibacterial therapy of corresponding drug-resistant infections. Testing the ability of plague and pseudotuberculosis diagnostic phages to plate on Escherichia coli is important to estimate their diagnostic value and potential impact on normal microflora when using them as antibacterial drugs. In this work, 11 bacteriophages capable of lysing Yersinia pestis and/or Yersinia pseudotuberculosis were characterized including 6 plague and 3 pseudotuberculosis diagnostic phages. The efficiencies of phage plating were determined on Y. pestis, Y. pseudotuberculosis, and E. coli K-12 at both diagnostic (28°C) and body (37°C) temperatures. Only two phages could not form plaques on E. coli, Pokrovskaya, and φJA1. The rest of phages could plate on E. coli K-12 albeit with lower efficiencies at 28°C than on the corresponding Yersinia species. Efficiency of plating assays allowed us to determine the phages with both high diagnostic value and therapeutic potential including φA1122, L-413C, Pokrovskaya, φJA1, Y, T7Yp, and d’Herelle-m. Using site-directed mutagenesis, trans-complementation, and adsorption tests, we determined the E. coli K-12 receptors for three phages, L-413C, well-known enterobacteriophage P2, and PST in different sugar residues of the LPS outer core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann HW, Poty F (1969) Relationship between coliphages T2 and 3, and phage PST of Pasteurella pseudotuberculosis. Rev Can Biol 28:201–204

    PubMed  CAS  Google Scholar 

  • Advier M (1933) Etude d’un bactériophage antipesteux. Bull Soc Pathol Exot 26:94–99

    Google Scholar 

  • Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12. Genetics 39:440–452

    PubMed  CAS  Google Scholar 

  • Arutyunov YI (1970) Biological characteristics of plague and pseudotuberculosis bacteriophages. Zh Mikrobiol Epidemiol Immunobiol 8:106–111

    Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    PubMed  CAS  Google Scholar 

  • Bertani LE (1957) The effect of the inhibition of protein synthesis on the establishment of lysogeny. Virology 4:53–71

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Bobrov AG, Kirillina OA, Filippov AA et al (1999) Restriction mapping of DNA of plague diagnostic phages Pokrovskaya and L-413C. Probl Particularly Dangerous Infect 79:138–144

    Google Scholar 

  • Burrows TW, Bacon GW (1960) V and W antigens in strains of Pasteurella pseudotuberculosis. Br J Exp Pathol 41:38–44

    PubMed  CAS  Google Scholar 

  • Carniel E, Autenrieth I, Cornelis G et al (2006) Y. enterocolitica and Y. pseudotuberculosis. In: Dworkin M, Falkow S (eds) The prokaryotes: a handbook on the biology of bacteria, pt 3, section 3.3. Springer, New York, pp 270–398

    Google Scholar 

  • Chu MC (2000) Laboratory manual of plague diagnostic tests. Centers for Disease Control and Prevention, Fort Collins, 129 p

    Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Drexler K, Dannull J, Hindennach I et al (1991) Single mutations in a gene for a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J Mol Biol 219:655–663

    Article  PubMed  CAS  Google Scholar 

  • Eppinger M, Rosovitz MJ, Fricke WF et al (2007) The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet 3(8):e142

    Article  PubMed  Google Scholar 

  • Filippov AA, Sergueev KV, He Y et al (2011) Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 6(9):e25486

    Article  PubMed  Google Scholar 

  • Frirdich E, Lindner B, Holst O, Whitfield C (2003) Overexpression of the waaZ gene leads to modification of the structure of the inner core region of Escherichia coli lipopolysaccharide, truncation of the outer core, and reduction of the amount of O polysaccharide on the cell surface. J Bacteriol 185:1659–1671

    Article  PubMed  CAS  Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528

    Article  PubMed  CAS  Google Scholar 

  • Garcia E, Elliott JM, Ramanculov E et al (2003) The genome sequence of Yersinia pestis bacteriophage ϕA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol 185:5248–5262

    Article  PubMed  CAS  Google Scholar 

  • Garcia E, Chain P, Elliott JM et al (2008) Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 372:85–96

    Article  PubMed  CAS  Google Scholar 

  • Guiyoule A, Gerbaud G, Buchrieser C et al (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7:43–48

    Article  PubMed  CAS  Google Scholar 

  • Gurleva GG, Arutyunov YI, Khaliapina EE (1981) Serologic relationship and specificity of action of pseudotuberculosis and coli-dysentery phages. Zh Mikrobiol Epidemiol Immunobiol 5:65–68

    PubMed  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    PubMed  CAS  Google Scholar 

  • Hertman I (1964) Bacteriophage common to Pasteurella pestis and Escherichia coli. J Bacteriol 88:1002–1005

    PubMed  CAS  Google Scholar 

  • Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa Y, Ikemura K (1979) Isolation of Yersinia enterocolitica and Yersinia pseudotuberculosis from human specimens and their drug-resistance in the Niigata District of Japan. Contrib Microbiol Immunol 5:106–114

    PubMed  CAS  Google Scholar 

  • Kerby GP, Gowdy RA, Dillon ES et al (1949) Purification, pH stability and sedimentation properties of the T7 bacteriophage of Escherichia coli. J Immunol 63:93–107

    PubMed  CAS  Google Scholar 

  • Kimura S, Ikeda T, Eda T et al (1976) R plasmids from Yersinia. J Gen Microbiol 97:141–144

    Article  PubMed  CAS  Google Scholar 

  • Knapp W (1963) Varying behavior of Pasteurella phages. Zentralbl Bakteriol Orig 190:39–46

    PubMed  CAS  Google Scholar 

  • Kotlyarova RI (1956) Pseudotuberculosis bacteriophage and its characteristics. In: Proceedings of Research Anti-Plague Institute of Caucasus and Transcaucasia, Stavropol, pp 234–241

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Larina VS, Anisimov PI, Adamov AK (1970) A novel strain of plague bacteriophage for identification of Pasteurella pestis. Probl Particularly Dangerous Infect 11:132–136

    Google Scholar 

  • Leshkovich NL (1981) Inhibitory effect of normal serum on phage adsorption. In: Prophylaxis of particularly dangerous infections. Alma-Ata, pp 66–69

    Google Scholar 

  • Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241

    Article  PubMed  CAS  Google Scholar 

  • Long C, Jones TF, Vugia DG et al (2010) Yersinia pseudotuberculosis and Y. enterocolitica infections, FoodNet, 1996–2007. Emerg Infect Dis 16:566–567

    Article  PubMed  Google Scholar 

  • Naumov AV, Samoilova LV (eds) (1992) Manual on prophylaxis of plague. Russian Research Anti-Plague Institute “Microbe” Press, Saratov, 278 p

    Google Scholar 

  • Nilsson AS, Haggård-Ljungquist E (2007) Evolution of P2-like phages and their impact on bacterial evolution. Res Microbiol 158:311–317

    Article  PubMed  CAS  Google Scholar 

  • Novoseltsev NN, Marchenkov VI (1990) Yersinia pestis phage of a new serovar. Zh Mikrobiol Epidemiol Immunobiol 11:9–12

    Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Plotnikov OP, Larina VS, Kondrashin YI, Vorob’yova TV (1982) Spectrum of lytic activity of bacteriophages isolated from soil of rodents’ holes. In: Anisimov PI, Karaseva ZN, Konnov NP (eds) Selection and genetics of causative agents of particularly dangerous infections. Institute “Microbe” Press, Saratov, pp 56–61

    Google Scholar 

  • Pokrovskaya MP (1929) A plague bacteriophage in dead susliks. Gigiena Epidemiol 12:31–34

    Google Scholar 

  • Pruzzo C, Valisena S, Satta G (1983) Laboratory and wild-type Klebsiella pneumoniae strains carrying mannose-inhibitable adhesins and receptors for coliphages T3 and T7 are more pathogenic for mice than are strains without such receptors. Infect Immun 39:520–527

    PubMed  CAS  Google Scholar 

  • Qimron U, Marintcheva B, Tabor S, Richardson CC (2006) Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci U S A 103:19039–19044

    Article  PubMed  CAS  Google Scholar 

  • Sakal’ NN, Grischenko RI (1977) On the specificity of pseudotuberculosis phage. Probl Particularly Dangerous Infect 53:48–51

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schofield DA, Molineux IJ, Westwater C (2009) Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol 47:3887–3894

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Ergin A, Michael K et al (2008) Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J Bacteriol 190:332–342

    Article  PubMed  CAS  Google Scholar 

  • Sergueev KV, He Y, Borschel RH et al (2010) Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 5(6):e11337

    Article  PubMed  Google Scholar 

  • Shashaev MA (1966) Comparative characterization of plague and pseudotuberculosis phages. In: Production of bacterial preparations for prophylaxis and diagnostics of particularly dangerous infections, Saratov, pp 350–356

    Google Scholar 

  • Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451

    Article  PubMed  CAS  Google Scholar 

  • Sunshine MG, Thorn M, Gibbs W et al (1971) P2 phage amber mutants: characterization by use of a polarity suppressor. Virology 46:691–702

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Darby C (2006) Yersinia pestis YrbH is a ­multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61:861–870

    Article  PubMed  CAS  Google Scholar 

  • Welch TJ, Fricke WF, McDermott PF et al (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2(3):e309

    Article  PubMed  Google Scholar 

  • Welkos S, Pitt ML, Martinez M et al (2002) Determination of the virulence of the pigmentation-deficient and pigmentation/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206–2214

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Wu W, Qi Z et al (2010) The complete genome sequence and proteomics of Yersinia pestis phage ­Yep-phi. J Gen Virol 92:216–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Richard Calendar for critical reading of the manuscript and valuable comments, Drs Martin E Schriefer, Ian J Molineux, and Bakyt B Atshabar for providing bacteriophages. This research was supported by the Defense Threat Reduction Agency, Joint Science and Technology Office, Medical S&T Division. The findings and opinions expressed herein belong to the authors and do not necessarily reflect the official views of the WRAIR, the U.S. Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Filippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Filippov, A.A., Sergueev, K.V., He, Y., Nikolich, M.P. (2012). Bacteriophages Capable of Lysing Yersinia pestis and Yersinia pseudotuberculosis: Efficiency of Plating Tests and Identification of Receptors in Escherichia coli K-12. In: de Almeida, A., Leal, N. (eds) Advances in Yersinia Research. Advances in Experimental Medicine and Biology, vol 954. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3561-7_16

Download citation

Publish with us

Policies and ethics