Advertisement

Bacteriophages Capable of Lysing Yersinia pestis and Yersinia pseudotuberculosis: Efficiency of Plating Tests and Identification of Receptors in Escherichia coli K-12

  • Andrey A. Filippov
  • Kirill V. Sergueev
  • Yunxiu He
  • Mikeljon P. Nikolich
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 954)

Abstract

There are several bacteriophages (phages) utilized for diagnosis of plague and pseudotuberculosis. Some of them could be used for antibacterial therapy of corresponding drug-resistant infections. Testing the ability of plague and pseudotuberculosis diagnostic phages to plate on Escherichia coli is important to estimate their diagnostic value and potential impact on normal microflora when using them as antibacterial drugs. In this work, 11 bacteriophages capable of lysing Yersinia pestis and/or Yersinia pseudotuberculosis were characterized including 6 plague and 3 pseudotuberculosis diagnostic phages. The efficiencies of phage plating were determined on Y. pestis, Y. pseudotuberculosis, and E. coli K-12 at both diagnostic (28°C) and body (37°C) temperatures. Only two phages could not form plaques on E. coli, Pokrovskaya, and φJA1. The rest of phages could plate on E. coli K-12 albeit with lower efficiencies at 28°C than on the corresponding Yersinia species. Efficiency of plating assays allowed us to determine the phages with both high diagnostic value and therapeutic potential including φA1122, L-413C, Pokrovskaya, φJA1, Y, T7Yp, and d’Herelle-m. Using site-directed mutagenesis, trans-complementation, and adsorption tests, we determined the E. coli K-12 receptors for three phages, L-413C, well-known enterobacteriophage P2, and PST in different sugar residues of the LPS outer core.

Keywords

Yersinia Pestis Bacteriophage Therapy Normal Microflora Mesenteric Lymphadenitis Pneumonic Plague 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We wish to thank Dr. Richard Calendar for critical reading of the manuscript and valuable comments, Drs Martin E Schriefer, Ian J Molineux, and Bakyt B Atshabar for providing bacteriophages. This research was supported by the Defense Threat Reduction Agency, Joint Science and Technology Office, Medical S&T Division. The findings and opinions expressed herein belong to the authors and do not necessarily reflect the official views of the WRAIR, the U.S. Army or the Department of Defense.

References

  1. Ackermann HW, Poty F (1969) Relationship between coliphages T2 and 3, and phage PST of Pasteurella pseudotuberculosis. Rev Can Biol 28:201–204PubMedGoogle Scholar
  2. Advier M (1933) Etude d’un bactériophage antipesteux. Bull Soc Pathol Exot 26:94–99Google Scholar
  3. Appleyard RK (1954) Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12. Genetics 39:440–452PubMedGoogle Scholar
  4. Arutyunov YI (1970) Biological characteristics of plague and pseudotuberculosis bacteriophages. Zh Mikrobiol Epidemiol Immunobiol 8:106–111Google Scholar
  5. Bertani G (1951) Studies on lysogenesis. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedGoogle Scholar
  6. Bertani LE (1957) The effect of the inhibition of protein synthesis on the establishment of lysogeny. Virology 4:53–71PubMedCrossRefGoogle Scholar
  7. Blattner FR, Plunkett G III, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462PubMedCrossRefGoogle Scholar
  8. Bobrov AG, Kirillina OA, Filippov AA et al (1999) Restriction mapping of DNA of plague diagnostic phages Pokrovskaya and L-413C. Probl Particularly Dangerous Infect 79:138–144Google Scholar
  9. Burrows TW, Bacon GW (1960) V and W antigens in strains of Pasteurella pseudotuberculosis. Br J Exp Pathol 41:38–44PubMedGoogle Scholar
  10. Carniel E, Autenrieth I, Cornelis G et al (2006) Y. enterocolitica and Y. pseudotuberculosis. In: Dworkin M, Falkow S (eds) The prokaryotes: a handbook on the biology of bacteria, pt 3, section 3.3. Springer, New York, pp 270–398Google Scholar
  11. Chu MC (2000) Laboratory manual of plague diagnostic tests. Centers for Disease Control and Prevention, Fort Collins, 129 pGoogle Scholar
  12. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645PubMedCrossRefGoogle Scholar
  13. Drexler K, Dannull J, Hindennach I et al (1991) Single mutations in a gene for a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J Mol Biol 219:655–663PubMedCrossRefGoogle Scholar
  14. Eppinger M, Rosovitz MJ, Fricke WF et al (2007) The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet 3(8):e142PubMedCrossRefGoogle Scholar
  15. Filippov AA, Sergueev KV, He Y et al (2011) Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 6(9):e25486PubMedCrossRefGoogle Scholar
  16. Frirdich E, Lindner B, Holst O, Whitfield C (2003) Overexpression of the waaZ gene leads to modification of the structure of the inner core region of Escherichia coli lipopolysaccharide, truncation of the outer core, and reduction of the amount of O polysaccharide on the cell surface. J Bacteriol 185:1659–1671PubMedCrossRefGoogle Scholar
  17. Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528PubMedCrossRefGoogle Scholar
  18. Garcia E, Elliott JM, Ramanculov E et al (2003) The genome sequence of Yersinia pestis bacteriophage ϕA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol 185:5248–5262PubMedCrossRefGoogle Scholar
  19. Garcia E, Chain P, Elliott JM et al (2008) Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology 372:85–96PubMedCrossRefGoogle Scholar
  20. Guiyoule A, Gerbaud G, Buchrieser C et al (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7:43–48PubMedCrossRefGoogle Scholar
  21. Gurleva GG, Arutyunov YI, Khaliapina EE (1981) Serologic relationship and specificity of action of pseudotuberculosis and coli-dysentery phages. Zh Mikrobiol Epidemiol Immunobiol 5:65–68PubMedGoogle Scholar
  22. Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567PubMedGoogle Scholar
  23. Hertman I (1964) Bacteriophage common to Pasteurella pestis and Escherichia coli. J Bacteriol 88:1002–1005PubMedGoogle Scholar
  24. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540PubMedCrossRefGoogle Scholar
  25. Kanazawa Y, Ikemura K (1979) Isolation of Yersinia enterocolitica and Yersinia pseudotuberculosis from human specimens and their drug-resistance in the Niigata District of Japan. Contrib Microbiol Immunol 5:106–114PubMedGoogle Scholar
  26. Kerby GP, Gowdy RA, Dillon ES et al (1949) Purification, pH stability and sedimentation properties of the T7 bacteriophage of Escherichia coli. J Immunol 63:93–107PubMedGoogle Scholar
  27. Kimura S, Ikeda T, Eda T et al (1976) R plasmids from Yersinia. J Gen Microbiol 97:141–144PubMedCrossRefGoogle Scholar
  28. Knapp W (1963) Varying behavior of Pasteurella phages. Zentralbl Bakteriol Orig 190:39–46PubMedGoogle Scholar
  29. Kotlyarova RI (1956) Pseudotuberculosis bacteriophage and its characteristics. In: Proceedings of Research Anti-Plague Institute of Caucasus and Transcaucasia, Stavropol, pp 234–241Google Scholar
  30. Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86PubMedCrossRefGoogle Scholar
  31. Larina VS, Anisimov PI, Adamov AK (1970) A novel strain of plague bacteriophage for identification of Pasteurella pestis. Probl Particularly Dangerous Infect 11:132–136Google Scholar
  32. Leshkovich NL (1981) Inhibitory effect of normal serum on phage adsorption. In: Prophylaxis of particularly dangerous infections. Alma-Ata, pp 66–69Google Scholar
  33. Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241PubMedCrossRefGoogle Scholar
  34. Long C, Jones TF, Vugia DG et al (2010) Yersinia pseudotuberculosis and Y. enterocolitica infections, FoodNet, 1996–2007. Emerg Infect Dis 16:566–567PubMedCrossRefGoogle Scholar
  35. Naumov AV, Samoilova LV (eds) (1992) Manual on prophylaxis of plague. Russian Research Anti-Plague Institute “Microbe” Press, Saratov, 278 pGoogle Scholar
  36. Nilsson AS, Haggård-Ljungquist E (2007) Evolution of P2-like phages and their impact on bacterial evolution. Res Microbiol 158:311–317PubMedCrossRefGoogle Scholar
  37. Novoseltsev NN, Marchenkov VI (1990) Yersinia pestis phage of a new serovar. Zh Mikrobiol Epidemiol Immunobiol 11:9–12Google Scholar
  38. Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66PubMedGoogle Scholar
  39. Plotnikov OP, Larina VS, Kondrashin YI, Vorob’yova TV (1982) Spectrum of lytic activity of bacteriophages isolated from soil of rodents’ holes. In: Anisimov PI, Karaseva ZN, Konnov NP (eds) Selection and genetics of causative agents of particularly dangerous infections. Institute “Microbe” Press, Saratov, pp 56–61Google Scholar
  40. Pokrovskaya MP (1929) A plague bacteriophage in dead susliks. Gigiena Epidemiol 12:31–34Google Scholar
  41. Pruzzo C, Valisena S, Satta G (1983) Laboratory and wild-type Klebsiella pneumoniae strains carrying mannose-inhibitable adhesins and receptors for coliphages T3 and T7 are more pathogenic for mice than are strains without such receptors. Infect Immun 39:520–527PubMedGoogle Scholar
  42. Qimron U, Marintcheva B, Tabor S, Richardson CC (2006) Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci U S A 103:19039–19044PubMedCrossRefGoogle Scholar
  43. Sakal’ NN, Grischenko RI (1977) On the specificity of pseudotuberculosis phage. Probl Particularly Dangerous Infect 53:48–51Google Scholar
  44. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  45. Schofield DA, Molineux IJ, Westwater C (2009) Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol 47:3887–3894PubMedCrossRefGoogle Scholar
  46. Schwudke D, Ergin A, Michael K et al (2008) Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J Bacteriol 190:332–342PubMedCrossRefGoogle Scholar
  47. Sergueev KV, He Y, Borschel RH et al (2010) Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 5(6):e11337PubMedCrossRefGoogle Scholar
  48. Shashaev MA (1966) Comparative characterization of plague and pseudotuberculosis phages. In: Production of bacterial preparations for prophylaxis and diagnostics of particularly dangerous infections, Saratov, pp 350–356Google Scholar
  49. Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451PubMedCrossRefGoogle Scholar
  50. Sunshine MG, Thorn M, Gibbs W et al (1971) P2 phage amber mutants: characterization by use of a polarity suppressor. Virology 46:691–702PubMedCrossRefGoogle Scholar
  51. Tan L, Darby C (2006) Yersinia pestis YrbH is a ­multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61:861–870PubMedCrossRefGoogle Scholar
  52. Welch TJ, Fricke WF, McDermott PF et al (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2(3):e309PubMedCrossRefGoogle Scholar
  53. Welkos S, Pitt ML, Martinez M et al (2002) Determination of the virulence of the pigmentation-deficient and pigmentation/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206–2214PubMedCrossRefGoogle Scholar
  54. Zhao X, Wu W, Qi Z et al (2010) The complete genome sequence and proteomics of Yersinia pestis phage ­Yep-phi. J Gen Virol 92:216–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrey A. Filippov
    • 1
  • Kirill V. Sergueev
    • 1
  • Yunxiu He
    • 1
  • Mikeljon P. Nikolich
    • 1
  1. 1.Department of Emerging Bacterial Infections, Division of Bacterial and Rickettsial DiseasesWalter Reed Army Institute of ResearchSilver SpringUSA

Personalised recommendations