Skip to main content

Argumentation, Critical Reasoning, and Problem Solving

  • Chapter
  • First Online:
The Role of Criticism in Understanding Problem Solving

Abstract

Instructional designers must work in interdisciplinary contexts with incomplete information and with resource constraints. Instructional designers and instructional design researchers must have a broad understanding of multiple theories that inform and impact the planning and implementation of effective learning activities and environments. Obviously relevant theories include learning theory, systems theory, communications theory, and media theory [see Spector (2011), Foundations of educational technology: Integrative approaches and interdisciplinary perspectives. New York, NY: Routledge]. In addition, instructional practitioners and researchers, and others working in complex problem-solving domains, require a great deal of skill in collecting and analyzing information from multiple sources in a variety of formats and presenting relevant syntheses to decision makers and others. How is this vast knowledge base best developed in an individual? How do instructional designers and others acquire and master the relevant set of complex problem-solving skills? In order to answer these questions, it is necessary to develop a theoretically grounded and empirically justified framework for assessing the progressive development of argumentation, critical reasoning, and problem solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Andriessen, J. E. B. (2006). Arguing to learn. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 443–460). New York, NY: Cambridge University Press.

    Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory. A proposed system and its control processes. In K. Spence & J. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). New York: Academic.

    Google Scholar 

  • Braine, M. D. S. (1990). The natural logic approach to reasoning. In W. Overton (Ed.), Reasoning, necessity, and logic: Developmental perspectives (pp. 133–157). Hillsdale, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  • Brem, S., & Rips, L. (2000). Evidence and explanation in informal argument. Cognitive Science, 24, 573–604.

    Article  Google Scholar 

  • Carlson, H. L. (1991). Learning style and program design in interactive multimedia. Educational Technology Research and Development, 39(3), 41–48.

    Article  Google Scholar 

  • Clark, R. C. (2008). Building expertise: Cognitive methods for training and performance improvement (3rd ed.). San Francisco, CA: Wiley.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction (pp. 453–494). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Dörner, D. (1996). Politischer mythos und symbilische politik. Reinbek, Germany: Rowohlt.

    Google Scholar 

  • Dörner, D., & Wearing, A. (1995). Complex problem solving: Toward a (computer-simulated) theory. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 65–99). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Farnham-Diggory, S. (1972). Cognitive processes in education: A psychological preparation for teaching and curriculum development. New York: Harper & Row.

    Google Scholar 

  • Friedman, M. (2002). Kuhn, and the rationality of science. Philosophy of Science, 69, 171–190.

    Article  Google Scholar 

  • Funke, J. (1991). Solving complex problems: Exploration and control of complex systems. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 185–222). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Funke, J., & Frensch, P. A. (1995). Complex problem solving research in North America and Europe: An integrative review. Foreign Psychology, 5, 42–47.

    Google Scholar 

  • Gagné, R. (1985). The conditions of learning and the theory of instruction (4th ed.). New York, NY: Holt, Rinehart, & Winston.

    Google Scholar 

  • Gagné, E. D., Yekovich, C. W., & Yecovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). New York, NY: Harper-Collins.

    Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.

    Article  Google Scholar 

  • Glaser, R., Lesgold, A., & Lajoie, S. (1987). Toward a cognitive theory for the measurement of achievement. In R. R. Ronning, J. Glover, J. C. Conoley, & J. C. Witt (Eds.), The influence of cognitive psychology on testing and measurement (pp. 41–85). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Greeno, J. G. (1989). Situations, mental models, and generative knowledge. In D. Klahr & K. Kotovsky (Eds.), Complex information processing (pp. 285–318). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Hale, C. R., & Barsalou, L. W. (1995). Explanation content and construction during system ­learning and troubleshooting. The Journal of the Learning Sciences, 4(4), 385–436.

    Article  Google Scholar 

  • Halpern, D. F. (1989). Thought and knowledge: An introduction to critical thinking. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hambrick, D., & Engle, R. (2003). The role of working memory in problem solving. In J. Davidson & R. Sternberg (Eds.), The psychology of problem solving (pp. 176–206). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Hoffman, B., & Schraw, G. (2010). Conceptions of efficiency: Applications in learning and problem solving. Educational Psychologist, 45, 1–10.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 469–499). Cambridge, MA: MIT.

    Google Scholar 

  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85.

    Article  Google Scholar 

  • Jonassen, D. H. (2004). Learning to solve problems: An instructional design guide. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for PBL. Interdisciplinary Journal of Problem-Based Learning, 2(2), 6–28.

    Article  Google Scholar 

  • Kafai, Y. B., & Ching, C. C. (2004). Children as instructional designers: Apprenticing, questioning, and evaluating in the Learning Science by Design project. In N. M. Seel & S. Dijkstra (Eds.), Curriculum, plans and processes of instructional design: International perspectives. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Karplus, R. (1969). Introductory physics: A model approach. New York, NY: Benjamins.

    Google Scholar 

  • Keller, J. M. (2010). Motivational design for learning and performance: The ARCS model approach. New York, NY: Springer.

    Book  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, and problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86.

    Article  Google Scholar 

  • Klaczynski, P. (2000). Motivated scientific reasoning biases, epistemological beliefs, and theory polarization: A two-process approach to adolescent cognition. Child Development, 71, 1347–1366.

    Article  Google Scholar 

  • Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., & Ryan, M. (2004). Promoting deep science learning through case-based reasoning: Rituals and practices in learning by design classrooms. In N. M. Seel & S. Dijkstra (Eds.), Curriculum, plans and processes of instructional design: International perspectives (pp. 89–114). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kuhn, D. (1991). The skills of argument. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337.

    Article  Google Scholar 

  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16–26.

    Google Scholar 

  • Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245–1260.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1990). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59(1), 14–19.

    Article  Google Scholar 

  • Merrill, M. D. (2002). First principles of instructional design. Educational Technology Research & Development, 50(3), 43–59.

    Article  Google Scholar 

  • Milrad, M., Spector, J. M., & Davidsen, P. I. (2003). Model facilitated learning. In S. Naidu (Ed.), Learning and teaching with technology: Principles and practices (pp. 13–27). London, UK: Kogan Page.

    Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7–14). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review. Contemporary Educational Psychology, 33, 345–359.

    Article  Google Scholar 

  • Nussbaum, E. M. (2011). Argumentation, dialogue theory, and probability modeling: Alternative frameworks for argumentation research in education. Educational Psychologist, 46(2), 84–106.

    Article  Google Scholar 

  • O’Keefe, D. J. (1982). The concept of argument and arguing. In J. R. Cox & C. A. Willard (Eds.), Advances in argumentation theory and research (pp. 3–23). Carbondale, IL: Southern Illinois University Press.

    Google Scholar 

  • Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and monitoring activities. Cognition and Instruction, 1, 117–175.

    Article  Google Scholar 

  • Piaget, J. (1985). The equilibrium of cognitive structures: The central problem of intellectual development (T. Brown & K. L. Thampy, Trans.). Chicago, IL: University of Chicago Press. (Original work published 1975).

    Google Scholar 

  • Reigeluth, C. M. (1999). What is instructional-design theory and how is it changing? In C. M. Reigeluth (Ed.), Instructional-design theories and models (A new paradigm of instructional theory, Vol. 2, pp. 5–29). Mahwah, NJ: Lawrence Erlbaun Associates.

    Google Scholar 

  • Rips, L. J. (1984). Reasoning as a central ability. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 2, pp. 105–147). Hillsdale, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  • Roth, W.-M., & Bowen, G. M. (1995). Knowing and interacting: A study of culture, practices, and resources in a grade 8 open-inquiry science guided by an apprenticeship metaphor. Cognition and Instruction, 13, 73–128.

    Article  Google Scholar 

  • Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart, & The PDP research group (Eds.), Parallel distributed processing. Explorations in the microstructure of cognition (Psychological and biological models, Vol. 2, pp. 7–57). Cambridge, MA: MIT.

    Google Scholar 

  • Schank, R. C., & Abelson, R. (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Earlbaum Assoc.

    Google Scholar 

  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1994). Mathematics thinking and problem solving. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Schraw, G. (2006). Knowledge: Structures and processes. In P. A. Alexander & P. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 245–264). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Schunk, D. H. (2008). Learning theories: An educational perspective (5th ed.). Columbus, OH: Merrill/Prentice-Hall.

    Google Scholar 

  • Seel, N. M. (1999). Educational diagnosis of mental models: Assessment problems and technology-based solutions. Journal of Structural Learning and Intelligent Systems, 14(2), 153–185.

    Google Scholar 

  • Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition, and Learning, 1(1), 59–85.

    Google Scholar 

  • Seel, N. M., Al-Diban, S., & Blumschein, P. (2000). Mental models and instructional planning. In M. Spector & T. M. Anderson (Eds.), Integrated and holistic perspectives on learning, instruction and technology: Understanding complexity (pp. 129–158). Dordrecht, NL: Kluwer Academic Publishers.

    Google Scholar 

  • Shuell, T. J. (1996). Teaching and learning in a classroom context. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 726–764). New York, NY: Macmillan.

    Google Scholar 

  • Spector, J. M. (2001). A philosophy of instructional design for the 21st century? Journal of Structural Learning and Intelligent Systems, 14(4), 307–318.

    Google Scholar 

  • Spector, J. M. (2010). Mental representations and their analysis: An epistemological perspective. In D. Ifenthaler, P. Pirnay-dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 17–40). New York, NY: Springer.

    Google Scholar 

  • Spector, J. M. (2011). Foundations of educational technology: Integrative approaches and interdisciplinary perspectives. New York, NY: Routledge.

    Google Scholar 

  • Spiro, R. J., Coulson, R. L., Feltovich, P. J., & Anderson, D. (1988). Cognitive flexibility theory: Advanced knowledge acquisition in ill-structured domains. In V. Patel (Ed.), Proceedings of the 10th Annual Conference of the Cognitive Science Society (pp. 375–383). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Stachowiak, H. (1973). Allgemeine modelltheorie. Vienna, Austria: Springer.

    Book  Google Scholar 

  • Sterman, J. D. (1994). Learning in and about complex systems. Systems Dynamics Review, 10(2–3), 291–330.

    Article  Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. New York, NY: Cambridge University Press.

    Google Scholar 

  • van Eemeren, F. H., & Grootendorst, R. (1999). Developments in argumentation theory. In G. Rijlaarsdam, E. Espéret, J. Andriessen, & P. Coirier (Eds.), Studies in writing (Foundations of argumentative text processing, Vol. 5). Amsterdam: Amsterdam University Press.

    Google Scholar 

  • van Lehn, K. (1988). Student modeling. In M. C. Polson & J. J. Richardson (Eds.), Foundations of intelligent tutoring systems (pp. 55–78). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • van Merriënboer, J. J. G., & Kirschner, P. (2007). Ten steps to complex learning: A systematic approach to four-component instructional design theory. New York, NY: Routledge.

    Google Scholar 

  • Walton, D. N. (2000). The place of dialogue theory in logic, computer science and communication studies. Synthese, 123, 327–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Spector .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Spector, J.M., Park, S.W. (2012). Argumentation, Critical Reasoning, and Problem Solving. In: Fee, S., Belland, B. (eds) The Role of Criticism in Understanding Problem Solving. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3540-2_2

Download citation

Publish with us

Policies and ethics