Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides

  • Dragomir N. Neshev
  • Andrey A. Sukhorukov
  • Yuri S. Kivshar
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 170)

Abstract

Photonic structures with a periodic modulation of the optical refractive index play an important role in the studies of the fundamental aspects of wave dynamics [1, 2]. In particular, photonic crystals, layered media, or closely spaced optical waveguides enable manipulation of the key phenomena governing optical beam propagation: spatial refraction and diffraction. Arrays of coupled optical waveguides are particularly attractive as an experimental testbed due to their easier fabrication and characterization, as well as because of the opportunities they offer for enhanced nonlinear effects as a result of the large propagation distances in such structures. The physics of beam propagation in optical waveguide arrays is governed by the coupling of light between neighboring waveguides and the subsequent interference of the coupled light. Since both the coupling and the interference processes are sensitive to the light wavelength, the output intensity profiles can be drastically different for each spectral component of the input beam. This is a particular concern in many practical cases, including ultra-broad bandwidth optical communications, manipulation of ultra-short pulses or supercontinuum radiation, where the bandwidth of the optical signals can span over a wide frequency range.

Keyword

Nonlinear periodic structures Waveguide arrays Solitons Harmonic generation 

Notes

Acknowledgment

The authors acknowledge the substantial and valuable contribution of a large number of research students and collaborators to the results summarized in this chapter. Especially we would like to thank A. Mitchell, F. Setzpfandt, I. L. Garanovich, A. Dreischuh, and T. Pertsch. The work has been supported by the Australian Research Council.

References

  1. 1.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)MATHGoogle Scholar
  2. 2.
    C. Denz, S. Flach, Yu. S. Kivshar (eds.), Nonlinearities in Periodic Structures and Metamaterials (Springer-Verlag, Berlin, 2009)Google Scholar
  3. 3.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, Cambridge, 1994)Google Scholar
  4. 4.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003)MATHGoogle Scholar
  5. 5.
    A.T. Winfree, Science 298(5602), 2336 (2002)CrossRefGoogle Scholar
  6. 6.
    L. Larger, J.M. Dudley, Nature 465(7294), 41 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Phys. Rep. 463(1–3), 1 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Christodoulides, R.I. Joseph, Opt. Lett. 13(9), 794 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, J.S. Aitchison, Phys. Rev. Lett. 81(16), 3383 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, D.N. Christodoulides, Phys. Rev. Lett. 90(2), 023902 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    D. Neshev, E. Ostrovskaya, Y. Kivshar, W. Krolikowski, Opt. Lett. 28(9), 710 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    D.N. Christodoulides, F. Lederer, Y. Silberberg, Nature 424(6950), 817 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Sukhorukov, Y.S. Kivshar, H.S. Eisenberg, Y. Silberberg, IEEE J. Quantum Electron. 39(1), 31 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, M.A. Karpierz, Opt. Lett. 29(13), 1530 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    R. Iwanow, R. Schiek, G.I. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Phys. Rev. Lett. 93(11), 113902 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    F. Chen, M. Stepic, C.E. Ruter, D. Runde, D. Kip, V. Shandarov, O. Manela, M. Segev, Opt. Express 13(11), 4314 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    J.W. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, N.K. Efremidis, Opt. Express 13(6), 1780 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Matuszewski, C.R. Rosberg, D.N. Neshev, A.A. Sukhorukov, A. Mitchell, M. Trippenbach, M.W. Austin, W. Krolikowski, Y.S. Kivshar, Opt. Express 14(1), 254 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    D.N. Neshev, A.A. Sukhorukov, W. Krolikowski, Y.S. Kivshar, J. Nonlinear Opt. Phys. Mater. 16(1), 1 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A.L. Jones, J. Opt. Soc. Am. 55(3), 261 (1965)ADSCrossRefGoogle Scholar
  21. 21.
    S. Somekh, E. Garmire, A. Yariv, H.L. Garvin, R.G. Hunsperger, Appl. Phys. Lett. 22(1), 46 (1973)ADSCrossRefGoogle Scholar
  22. 22.
    R. Iwanow, D.A. May-Arrioja, D.N. Christodoulides, G.I. Stegeman, Y. Min, W. Sohler, Phys. Rev. Lett. 95(5), 053902 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    D.N. Neshev, A.A. Sukhorukov, A. Dreischuh, R. Fischer, S. Ha, J. Bolger, L. Bui, W. Krolikowski, B.J. Eggleton, A. Mitchell, M.W. Austin, Y.S. Kivshar, Phys. Rev. Lett. 99(12), 123901 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Sukhorukov, D.N. Neshev, A. Dreischuh, W. Krolikowski, J. Bolger, B.J. Eggleton, L. Bui, A. Mitchell, Y.S. Kivshar, Opt. Express 16(9), 5991 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Motzek, A.A. Sukhorukov, Y.S. Kivshar, Opt. Express 14(21), 9873 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, New York, 1988)Google Scholar
  27. 27.
    P.S.J. Russell, T.A. Birks, F.D. Lloyd-Lucas, in Confined Electrons and Photons, ed. by E. Burstein, C. Weisbuch (Plenum, New York, 1995), pp. 585–633CrossRefGoogle Scholar
  28. 28.
    I. Babushkin, A. Husakou, J. Herrmann, Y.S. Kivshar, Opt. Express 15(19), 11978 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    F. Setzpfandt, A.A. Sukhorukov, D.N. Neshev, R. Schiek, Y.S. Kivshar, T. Pertsch, Phys. Rev. Lett. 105, 233905 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    P.D. Rasmussen, F.H. Bennet, D.N. Neshev, A.A. Sukhorukov, C.R. Rosberg, W. Krolikowski, O. Bang, Y.S. Kivshar, Opt. Lett. 34(3), 295 (2009)CrossRefGoogle Scholar
  31. 31.
    A.A. Sukhorukov, D.N. Neshev, Y.S. Kivshar, Opt. Express 15(20), 13058 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R. Pezer, H. Buljan, G. Bartal, M. Segev, J.W. Fleischer, Phys. Rev. E 73(5), 056608 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    M. Mitchell, M. Segev, Nature 387(6636), 880 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008)Google Scholar
  35. 35.
    G.C. Valley, M. Segev, B. Crosignani, A. Yariv, M.M. Fejer, M.C. Bashaw, Phys. Rev. A 50(6), R4457 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    H. Buljan, T. Schwartz, M. Segev, M. Soljacic, D.N. Christodoulides, J. Opt. Soc. Am. B 21(2), 397 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Z.Y. Xu, Y.V. Kartashov, L. Torner, Opt. Lett. 31(13), 2027 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    R.R. Shah, D.M. Kim, T.A. Rabson, F.K. Tittel, J. Appl. Phys. 47(12), 5421 (1976)ADSCrossRefGoogle Scholar
  39. 39.
    F. Jermann, M. Simon, E. Kratzig, J. Opt. Soc. Am. B 12(11), 2066 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78(4), 1135 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25(1), 25 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    P.S.J. Russell, Science 299(5605), 358 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    M.H. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, H.I. Smith, Nature 429(6991), 538 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    M. Balu, J. Hales, D.J. Hagan, E.W. Van Stryland, Opt. Express 13(10), 3594 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    G.I. Stegeman, M. Segev, Science 286(5444), 1518 (1999)CrossRefGoogle Scholar
  46. 46.
    Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)Google Scholar
  47. 47.
    S.M. Saltiel, A.A. Sukhorukov, Y.S. Kivshar, Prog. Optics 47, 1 (2005)CrossRefGoogle Scholar
  48. 48.
    T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer, F. Lederer, Phys. Rev. Lett. 88(9), 093901 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    A.A. Sukhorukov, Y.S. Kivshar, O. Bang, C.M. Soukoulis, Phys. Rev. E 63(2), 016615 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    A. Kobyakov, F. Lederer, Phys. Rev. A 54(4), 3455 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    T. Peschel, U. Peschel, F. Lederer, Phys. Rev. E 57(1), 1127 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    M.I. Molina, R.A. Vicencio, Y.S. Kivshar, Phys. Rev. E 72(3), 036622 (2005)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    R. Iwanow, R. Schiek, G. Stegeman, T. Pertsch, F. Lederer, Y. Min, W. Sohler, Opto-Electron. Rev. 13(2), 113 (2005)Google Scholar
  54. 54.
    D. McMillen, N. Kopell, J. Hasty, J.J. Collins, Proc. Natl. Acad. Sci. U.S.A. 99(2), 679 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    I.L. Garanovich, A.A. Sukhorukov, Y.S. Kivshar, Phys. Rev. E 74(6), 066609 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    A. Szameit, I.L. Garanovich, M. Heinrich, A.A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tuennermann, Y.S. Kivshar, Nat. Phys. 5(4), 271 (2009)CrossRefGoogle Scholar
  57. 57.
    D.H. Dunlap, V.M. Kenkre, Phys. Rev. B 34(6), 3625 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    N.K. Efremidis, D.N. Christodoulides, Phys. Rev. E 65(5), 056607 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    S. Longhi, F. Dreisow, M. Heinrich, T. Pertsch, A. Tunnermann, S. Nolte, A. Szameit, Phys. Rev. A 82(5), 053813 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    F. Bloch, Z. Phys. 52, 555 (1928)ADSMATHGoogle Scholar
  61. 61.
    S. Longhi, Opt. Lett. 34(14), 2174 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    I.L. Garanovich, Phys. Lett. A 372(21), 3922 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, S. Longhi, Appl. Phys. Lett. 95(26), 261102 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    I.L. Garanovich, A. Szameit, A.A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, Y.S. Kivshar, Opt. Express 15(15), 9737 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    I.L. Garanovich, A.A. Sukhorukov, Opt. Lett. 32(5), 475 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    X.Y. Qi, I.L. Garanovich, A.A. Sukhorukov, W. Krolikowski, A. Mitchell, G.Q. Zhang, D.N. Neshev, Y.S. Kivshar, Opt. Lett. 35(9), 1371 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    I.L. Garanovich, A.A. Sukhorukov, Y.S. Kivshar, Phys. Rev. Lett. 100(20), 203904 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    A. Szameit, I.L. Garanovich, M. Heinrich, A.A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, Y.S. Kivshar, Phys. Rev. Lett. 101(20), 203902 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    X.Y. Qi, I.L. Garanovich, Z.Y. Xu, A.A. Sukhorukov, W. Krolikowski, A. Mitchell, G.Q. Zhang, D.N. Neshev, Y.S. Kivshar, Opt. Lett. 34(18), 2751 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    A.A. Sukhorukov, D.N. Neshev, A. Dreischuh, R. Fischer, S. Ha, W. Krolikowski, J. Bolger, A. Mitchell, B.J. Eggleton, Y.S. Kivshar, Opt. Express 14(23), 11265 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Yu.S. Kivshar, H. Martin, I. Makasyuk, Z. Chen, Phys. Rev. Lett. 92, 123903 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    Z.Y. Xu, A.A. Sukhorukov, Opt. Lett. 34(8), 1168 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Dragomir N. Neshev
    • 1
  • Andrey A. Sukhorukov
    • 1
  • Yuri S. Kivshar
    • 1
  1. 1.Nonlinear Physics Centre, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations