Skip to main content

Nonlinear Interaction of Intense Ultrashort Filaments

  • Chapter
  • First Online:
Nonlinear Photonics and Novel Optical Phenomena

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 170))

  • 3051 Accesses

Abstract

We review our recent experimental studies on nonlinear interaction of intense ultrashort filaments in air. Strong spatiotemporal couplings are observed for non-collinearly interacting filaments and their intensity interference assists the formation of wavelength-scale periodic plasma density in the interaction region. Plasma waveguides based on such periodic modulation are experimentally observed as a potential high-intensity laser plasma component. As a result of the periodic modulation of the refractive index, plasma gratings are established with a relatively long lifetime, giving rising to time-delayed diffraction and efficient energy transfer between the interacting filaments. Two-dimensional plasma gratings as well as two-dimensional diffracted arrays are observed. The non-collinear filament interaction induces observable filament elongation and remarkable third harmonic enhancement of more than two orders of magnitude. Nonlinear filament interaction could be controlled to coalesce the intersecting ultraviolet femtosecond filaments into a single intense filament of a quite small core diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, G. Vdovin, Pulse compression by use of deformable mirrors. Opt. Lett. 24, 493 (1999)

    Article  ADS  Google Scholar 

  2. C.G. Durfee, A.R. Rundquist, S. Backus, C. Herne, M.M. Murnane, H.C. Kapteyn, Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187 (1999)

    Article  ADS  Google Scholar 

  3. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, J. Cary, W.P. Leemans, Guiding of relativistic laser pulses by preformed plasma channels. Phys. Rev. Lett. 95, 145002 (2005)

    Article  ADS  Google Scholar 

  4. S.Y. Chen, G.S. Sarkisov, A. Maksimchuk, R. Wagner, D. Umstadter, Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse. Phys. Rev. Lett. 80, 2610 (1998)

    Article  ADS  Google Scholar 

  5. F. Théberge, N. Akozbek, W.W. Liu, A. Becker, S.L. Chin, Tunable ultrashort laser pulses generated through filamentation in gases. Phys. Rev. Lett. 97, 023904 (2006)

    Article  ADS  Google Scholar 

  6. N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin, C.M. Bowden, Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. Phys. Rev. Lett. 89, 143901 (2002)

    Article  ADS  Google Scholar 

  7. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.P. Wolf, Y.B. Andre, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Woste, Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett. 25, 1397 (2000)

    Article  ADS  Google Scholar 

  8. L. Bergé, S. Skupin, Few-cycle light bullets created by femtosecond filaments. Phys. Rev. Lett. 100, 113902 (2008)

    Article  ADS  Google Scholar 

  9. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, U. Keller, Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Opt. Lett. 30, 2657 (2005)

    Article  ADS  Google Scholar 

  10. V. Kumarappan, K.Y. Kim, H.M. Milchberg, Guiding of intense laser pulses in plasma waveguides produced from efficient, femtosecond end-pumped heating of clustered gases. Phys. Rev. Lett. 94, 205004 (2005)

    Article  ADS  Google Scholar 

  11. J. Kasparian, R. Sauerbrey, S.L. Chin, The critical laser intensity of self-guided light filaments in air. Appl. Phys. B. 71, 877 (2000)

    Article  ADS  Google Scholar 

  12. L. Bergé, S. Skupin, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J.P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, R. Sauerbrey, Multiple filamentation of terawatt laser pulses in air. Phys. Rev. Lett. 92, 225002 (2004)

    Article  ADS  Google Scholar 

  13. L. Bergé, M.R. Schmidt, J.J. Rasmussen, P.L. Christiansen, K.Ø. Rasmussen, Amalgamation of interacting light beamlets in Kerr-type media. J. Opt. Soc. Am. B 14, 2550 (1997)

    Article  ADS  Google Scholar 

  14. W. Królikowski, S.A. Holmstrom, Fusion and birth of spatial solitons upon collision. Opt. Lett. 22, 369 (1997)

    Article  ADS  Google Scholar 

  15. V. Antoine, L. Bergé, Femtosecond optical vortices in air. Phys. Rev. Lett. 95, 193901 (2005)

    Article  Google Scholar 

  16. M.-F. Shih, M. Segev, G. Salamo, Three-dimensional spiraling of interacting spatial solitons. Phys. Rev. Lett. 78, 2551 (1997)

    Article  ADS  Google Scholar 

  17. T.T. Xi, X. Lu, J. Zhang, Interaction of light filaments generated by femtosecond laser pulses in air. Phys. Rev. Lett. 96, 025003 (2006)

    Article  ADS  Google Scholar 

  18. J. Wu, H. Cai, Y. Tong, H. Zeng, Measurement of field-free molecular alignment by cross-defocusing assisted polarization spectroscopy. Opt. Express 17, 16300 (2009)

    Article  ADS  Google Scholar 

  19. Y. Feng, H. Pan, J. Liu, C. Chen, J. Wu, H. Zeng, Direct measurement of field-free molecular alignment by spatial (de)focusing effects. Opt. Express 19, 2852 (2011)

    Article  ADS  Google Scholar 

  20. H. Cai, J. Wu, X. Bai, H. Pan, H. Zeng, Molecular-alignment-assisted high-energy supercontinuum pulse generation in air. Opt. Lett. 35, 49 (2010)

    Article  ADS  Google Scholar 

  21. J. Wu, H. Cai, H. Zeng, A. Couairon, Femtosecond filamentation and pulse compression in the wake of molecular alignment. Opt. Lett. 33, 2593 (2008)

    Article  ADS  Google Scholar 

  22. H. Cai, J. Wu, H. Li, X. Bai, H. Zeng, Elongation of femtosecond filament by molecular alignment in air. Opt. Express 17, 21060 (2009)

    Article  Google Scholar 

  23. J. Wu, H. Cai, A. Couairon, H. Zeng, Wavelength tuning of a few-cycle laser pulse by molecular alignment in femtosecond filamentation wake. Phys. Rev. A 79, 063812 (2009)

    Article  ADS  Google Scholar 

  24. J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, H. Zeng, Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating. Opt. Express 19, 40 (2011)

    Article  ADS  Google Scholar 

  25. P. Lu, J. Liu, H. Li, H. Pan, J. Wu, H. Zeng, Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement. Appl. Phys. Lett. 97, 3478008 (2010)

    Google Scholar 

  26. H. Cai, J. Wu, P. Lu, X. Bai, L. Ding, H. Zeng, Attraction and repulsion of parallel femtosecond filaments in air. Phys. Rev. A 80, 051802 (2009)

    Article  ADS  Google Scholar 

  27. J. Wu, H. Cai, P. Lu, X. Bai, L. Ding, H. Zeng, Intense ultrafast light kick by rotational Raman wake in atmosphere. Appl. Phys. Lett. 95, 221502 (2009)

    Article  ADS  Google Scholar 

  28. P. Russell, Photonic crystal fibers. Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  29. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Photonic-bandgap microcavities in optical waveguides. Nature 390, 143 (1997)

    Article  ADS  Google Scholar 

  30. D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702 (2003)

    Article  ADS  Google Scholar 

  31. J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  32. H.J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, High-density disk storage by multiplexed microholograms. IEEE J. Sel. Top. Quant. Electron. 4, 840 (1998)

    Article  Google Scholar 

  33. D.C. Meisel, M. Wegener, K. Busch, Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps. Phys. Rev. B 70, 165104 (2004)

    Article  ADS  Google Scholar 

  34. H. Zeng, J. Wu, H. Xu, K. Wu, Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium. Phys. Rev. Lett. 96, 083902 (2006)

    Article  ADS  Google Scholar 

  35. D.G. Ouzounov, K.D. Moll, M.A. Foster, W.R. Zipfel, W.W. Webb, A.L. Gaeta, Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 27, 1513 (2002)

    Article  ADS  Google Scholar 

  36. T. Udem, R. Holzwarth, T.W. Hansch, Optical frequency metrology. Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  37. P. Lodahl, A. Floris van Driel, I.S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W.L. Vos, Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654 (2004)

    Article  ADS  Google Scholar 

  38. A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787 (1996)

    Article  ADS  Google Scholar 

  39. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  40. X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, Z. Xu, H. Zeng, Plasma waveguide array induced by filament interaction. Opt. Lett. 34, 3806 (2009)

    Article  Google Scholar 

  41. X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air. Appl. Phys. Lett. 95, 111103 (2009)

    Article  ADS  Google Scholar 

  42. H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360, 171 (2009)

    Article  ADS  Google Scholar 

  43. G.N. Gibson, R.R. Freeman, T.J. McIlrath, Dynamics of the high-intensity multiphoton ionization of N2. Phys. Rev. Lett. 67, 1230 (1991)

    Article  ADS  Google Scholar 

  44. A. Becker, A.D. Bandrauk, S.L. Chin, S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule. Chem. Phys. Lett. 343, 345 (2001)

    Article  ADS  Google Scholar 

  45. R.W.B. Pearse, A.G. Gaydon, The Identification of Molecular Sepctra, 4th edn. (Chapman and Hall, New York, 1984)

    Google Scholar 

  46. G. Rodriguez, A.R. Valenzuela, B. Yellampalle, M.J. Schmitt, K.Y. Kim, In-line holographic imaging and electron density extraction of ultrafast ionized air filaments. J. Opt. Soc. Am. B 25, 1988 (2008)

    Article  ADS  Google Scholar 

  47. M. Centurion, Y. Pu, Z.W. Liu, D. Psaltis, T.W. Hansch, Holographic recording of laser-induced plasma. Opt. Lett. 29, 772 (2004)

    Article  ADS  Google Scholar 

  48. D.M. Burland, Applications of holography in the investigation of photochemical reactions. Acc. Chem. Res. 16, 218 (1983)

    Article  Google Scholar 

  49. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  50. M. Mlejnek, M. Kolesik, J.V. Moloney, E.M. Wright, Optically turbulent femtosecond light guide in air. Phys. Rev. Lett. 83, 2938 (1999)

    Article  ADS  Google Scholar 

  51. T.K. Gaylord, M.G. Moharam, Thin and thick gratings: terminology clarification. Appl. Opt. 20, 3271 (1981)

    Article  ADS  Google Scholar 

  52. C.H. Pai, S.Y. Huang, C.C. Kuo, M.W. Lin, J. Wang, S.Y. Chen, C.H. Lee, J.Y. Lin, Fabrication of spatial transient-density structures as high-field plasma photonic devices. Phys. Plasmas 12, 070707 (2005)

    Article  ADS  Google Scholar 

  53. C.C. Kuo, C.H. Pai, M.W. Lin, K.H. Lee, J.Y. Lin, J. Wang, S.Y. Chen, Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901 (2007)

    Article  ADS  Google Scholar 

  54. X. Yang, J. Wu, Y. Tong, L. Ding, Z. Xu, H. Zeng, Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air. Appl. Phys. Lett. 97, 071108 (2010)

    Article  ADS  Google Scholar 

  55. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.P. Wolf, L. Wöste, Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85, 3977 (2004)

    Article  ADS  Google Scholar 

  56. P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476 (1990)

    Article  ADS  Google Scholar 

  57. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, L. Wöste, White-light filaments for atmospheric analysis. Science 301, 61 (2003)

    Article  ADS  Google Scholar 

  58. A.E. Jailaubekov, S.E. Bradforth, Tunable 30-femtosecond pulses across the deep ultraviolet. Appl. Phys. Lett. 87, 021107 (2005)

    Article  ADS  Google Scholar 

  59. R.J. Gehr, M.W. Kimmel, A.V. Smith, Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in β-BaB2O4. Opt. Lett. 23, 1298 (1998)

    Article  ADS  Google Scholar 

  60. Y. Wang, X. Dai, J. Wu, L. Ding, H. Zeng, Spectral modulation of ultraviolet femtosecond laser pulse by molecular alignment of CO2, O2, and N2. Appl. Phys. Lett. 96, 031105 (2010)

    Article  ADS  Google Scholar 

  61. Y. Wang, Y. Zhang, P. Chen, L. Shi, X. Lu, J. Wu, L. Ding, H. Zeng, The formation of an intense filament controlled by interference of ultraviolet femtosecond pulses. Appl. Phys. Lett. 98, 111103 (2011)

    Article  ADS  Google Scholar 

  62. D.N. Christodoulides, R.I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Natural Science Fund (10525416 and 10804032) and National key project for basic research (2011CB808105). Contributions from Heping Zeng’s group members and students (Xuan Yang, Yongdong Wang, Liping Shi, Shuai Yuan, Jingxin Ding, Haifeng Pan, Wenxue Li, Jian Wu, and liang’en Ding) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zeng, H., Liu, J. (2012). Nonlinear Interaction of Intense Ultrashort Filaments. In: Chen, Z., Morandotti, R. (eds) Nonlinear Photonics and Novel Optical Phenomena. Springer Series in Optical Sciences, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3538-9_10

Download citation

Publish with us

Policies and ethics