Advertisement

SemFus: Semantic Fusion Framework Based on JDL

  • Havva Alizadeh Noughabi
  • Mohsen Kahani
  • Behshid Behkamal
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 152)

Abstract

Data fusion techniques combine data from multiple sources and gather related information to achieve more specific inferences than could be achieved by using a single source. The most widely-used method for categorizing data fusion-related functions is the JDL model, but it suffers from semantics and syntax issues. In order to achieve semantic interoperability in a heterogeneous information system, the meaning of the information that is interchanged has to be understood across the systems. Semantic conflicts occur whenever two contexts do not use the same interpretation of the information. Using semantic technologies for the extraction of implicit knowledge is a new approach to overcome this problem. In this paper a semantic fusion framework (SemFus) is proposed based on JDL which can overcome the semantic problems in heterogeneous systems.

References

  1. 1.
    White FE (1991) Data fusion lexicon. Data fusion subpanel of the joint directors of laboratories technical panel for C3, Code 4202. NOSC, San DiegoGoogle Scholar
  2. 2.
    Hall DL, Llinas J (1997) An introduction to multi-sensor data fusion. Proc IEEE 85:6–23Google Scholar
  3. 3.
    Cheng HG (1997) Representing and reasoning about semantic conflicts in heterogeneous information sources. Doctoral dissertation, Sloan School of Management, MIT, CambridgeGoogle Scholar
  4. 4.
    Nakamura EF, Loureiro AA, Frery AC (2007) Information fusion for wireless sensor networks: methods, models, and classifications. ACM Comput Surv 39:3Google Scholar
  5. 5.
    Dasarathy BV (1997) Sensor fusion potential exploitation-innovative architectures and illustrative applications. Proc IEEE 85:24–38Google Scholar
  6. 6.
    Boyd JR (1987) A discourse on winning and losing. Unpublished set of briefing slides available at Air University Library, Maxwell AFB, AlabamaGoogle Scholar
  7. 7.
    Shulsky AN, Schmitt GJ (2002) Silent warfare: understanding the world of intelligence, 3rd edn. Brasseys Inc., New YorkGoogle Scholar
  8. 8.
    Bedworth MD, O’brien JC (1999) The omnibus model: a new model for data fusion. In: Proceedings of the 2nd international conference on information fusion, FUSION’99, ISIF, Sunnyvale, pp 437–444Google Scholar
  9. 9.
    Blasch E, Plano S (2002) JDL level 5 fusion model: user refinement issues and applications in group tracking. SPIE, vol 4729. Aerosense, pp 270–279Google Scholar
  10. 10.
    Polychronopoulos A, Amditis A, Scheunert U, Tatschke T (2006) Revisiting JDL model for automotive safety applications: the PF2 functional model. In: The 9th international conference on information fusion, Florence, 2006Google Scholar
  11. 11.
    John JS (2007) Where’s level 2/3 fusion—a look back over the past 10 years. In: 10th international conference on information fusion, 2007Google Scholar
  12. 12.
    Synnergren J, Gamalielsson J, Olsson B (2007) Mapping of the JDL data fusion model to bioinformatics. IEEE Explor 44:1506–1511Google Scholar
  13. 13.
    Steinberg AN, Bowman CL, White FE (1999) Revisions to the JDL data fusion model. Sensor fusion: architectures, algorithms, and applications. In: Proceedings of the SPIE, vol 3719Google Scholar
  14. 14.
    Llinas J, Bowman CL, Rogova G, Steinberg AN, Waltz E, White FE (2004) Revisiting the JDL data fusion model II. In: Proceedings of the 7th international conference on information fusion, Stockholm, 2004Google Scholar
  15. 15.
    Steinberg AN, Bowman CL, White FE (2004) Rethinking the JDL data fusion model. In: NSSDF conference proceedings, 2004Google Scholar
  16. 16.
    DeVin LJ, Holm M, Ng AHC (2010) The information fusion JDL-U model as a reference model for virtual manufacturing. J Robot Comp Integr 26(6):629–638Google Scholar
  17. 17.
    Cruz IF, Xiao H (2005) The role of ontologies in data integration. J Eng Intell Sys 13(4):245–252Google Scholar
  18. 18.
    Laskey KB, da Costa PCG, Wright EJ, Laskey KJ (2007) Probabilistic ontology for net-centric fusion. In: 10th international conference on information fusion, Quebec, 2007Google Scholar
  19. 19.
    Kokar MM, Matheus CJ, Baclawski K, Letkowski JA, Hinman M, Salerno J (2004) Use cases for ontologies in information fusion. In: Proceedings of the seventh international conference on information fusion, pp 415–421Google Scholar
  20. 20.
    Kokar M, Matheus CJ, Baclawski K (2009) Ontology-based situation awareness. Inform Fusion 10:83–98CrossRefGoogle Scholar
  21. 21.
    Kazakov M, Abdulrab H, Babkin E (2002) Ontology fusion approach for integration in heterogeneous distributed systems. Engineering context-aware object-oriented systems and environments, ECOOSEGoogle Scholar
  22. 22.
    Wache H, Voegele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H, Huebner S (2001) Ontology-based integration of information-a survey of existing approaches. In: Proceedings of IJCAI workshop on ontologies and information sharing, pp 108–117Google Scholar
  23. 23.
    Boury-Brisset A-C (2003) Ontology-based approach for information fusion. In: Proceedings of the 6th international conference on information fusion, CairnsGoogle Scholar
  24. 24.
    Smart PR, Bahrami A, Braines D, McRae-Spencer D, Yuan J, Shadbolt NR (2007) Semantic technologies and enhanced situation awareness. In: Paper presented at the 1st annual conference of the international technology alliance, ACITA, MarylandGoogle Scholar
  25. 25.
    Gagnon M (2007) Ontology-based integration of data sources. In: 10th international conference on information fusion, QuebecGoogle Scholar
  26. 26.
    Little EG, Rogova GL (2009) Designing ontologies for higher level fusion. Inform Fusion 10:70–82Google Scholar
  27. 27.
    Matheus C, Kokar M, Baclawski K, Letkowski J, Call C, Hinman M, Salerno J, Boulware D (2005) SAWA: an assistant for higher-level fusion and situation awareness. In: Paper presented at the SPIE conference on multisensor, multisource information fusion, OrlandoGoogle Scholar
  28. 28.
    Zafeiropoulos A, Konstantinou N, Arkoulis S, Spanos D, Mitrou N (2008) A semantic-based architecture for sensor data fusion. In: 2nd international conference on mobile ubiquitous computing, systems, services and technologies, 2008Google Scholar
  29. 29.
    Simperl E (2009) Reusing ontologies on the semantic web, a feasibility study. Data Knowl Eng 68(10):905–925CrossRefGoogle Scholar
  30. 30.
    Hall DL (2001) Handbook of multisensor data fusion. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Bizer H, Berners-Lee T (2009) Linked data—the story so far. Special issue on linked data. Int J Semantic Web Inform Sys 53:1–22Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Havva Alizadeh Noughabi
    • 1
  • Mohsen Kahani
    • 1
  • Behshid Behkamal
    • 1
  1. 1.Ferdowsi University of MashhadMashhadIran

Personalised recommendations