Axial Compressors and Turbines

  • Tarit Bose
Part of the Springer Aerospace Technology book series (SAT)


With the definition of the work coefficient in (6.4a) and (6.4b), we can now write from (4.22a) to (4.22d) the nondimensional azimuthal velocity component expressions as follows:
$$ \frac{{{{c}_{\rm{u1}}}}}{u} = \left( {1 - \hat{r}} \right) - \frac{\Psi}{4} $$
$$ \frac{{{{c}_{\rm{u2}}}}}{u} = \left( {1 - \hat{r}} \right) + \frac{\Psi}{4} $$
$$ \frac{{{{w}_{\rm{u1}}}}}{u} = \hat{r} + \frac{\Psi}{4} $$


Combustion Vortex Enthalpy Torque Vorticity 


  1. T. Arts, Aerothermal performance of a two-dimensional highly loaded transonic turbine nozzle guide vane: a test case for inviscid and viscous flow computations. ASME J. Turbomachine. 114, 147–154 (1992)CrossRefGoogle Scholar
  2. T.K. Bose, Numerical Fluid Dynamics (NAROSA, India, 1997)Google Scholar
  3. B. Eckert, Axial- und Radial Kompressoren (Springer, Berlin, 1953)CrossRefGoogle Scholar
  4. E.M. Murman, J.D. Cole, Calculation of plane steady transonic flow. AIAA J. 9, 114–121 (1971)CrossRefMATHGoogle Scholar
  5. J.H. Nicholson, A.E. Forest, M.L.G. Oldfield, D.L. Schultzm, Heat transfer optimized turbine rotor blades – an experimental study using transient techniques. ASME J. Eng. Gas Turbine. Power 106, 173–181 (1984)CrossRefGoogle Scholar
  6. J.F. Thompson, N.P. Weatherhill (eds.), Handbook of Grid Generation (CRC Press, Boca Raton, 1999)MATHGoogle Scholar
  7. J.F. Thompson, Z.U.A. Warsi, C.W. Mastin, Numerical Grid Generation. (North Holland, New York, 1985)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tarit Bose
    • 1
  1. 1.Aerospace EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations