Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Airbreathing Propulsion

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

The earliest efficient reversible thermodynamic cycle was proposed by Nicolas Léonard Sadi Carnot (1796–1832) with two isotherms and two isentropes in a cycle, but it remained mostly a curiosity until today. One of the earliest engine types used for aircraft applications was piston engines running on Otto and diesel cycles. The inventor of the Otto engine, Nicholas A. Otto (1832–1891), built a successful engine in 1876. These engines helped drive the Industrial Revolution in Europe. However, the workshops had low roofs, and some early engines built vertically required holes in the roof. In the absence of spark-plugs, ignition was done by positioning a flame near the top of the cylinder and a sliding valve would open to ignite the air–fuel mixture. There was no crank shaft, and the force of the cylinder was transferred through an arrangement of linear gear and some “catcher” pins to transfer the linear motion to a rotary motion. Sometimes the “catcher” would fail and the linear rod would go through the hole in the roof. Later these engines were built with a horizontal axis. Such early engines are on display at the German Museum in Munich, Germany. The inventor of the diesel cycle, Rudolf Diesel (1853–1913), was born in Paris to German parents who later moved to London because of Franco-Prussian War in 1870. He built the first engine in 1893 in MAN’s German factory in Augsburg. Diesel planned initially to build an engine based on an earlier proposal of the reversible Carnot cycle, which was to have the best thermodynamic efficiency within a given temperature ratio. He realized very quickly, however, that to realize a Carnot cycle, one would have to run the thermodynamic process of two isotherms as slowly as possible, but in an actual engine the two adiabatic processes must be run as fast as possible, with the result that the two opposite requirements cannot be satisfied. Further, he realized that the Carnot cycle, in spite of the best thermodynamic efficiency, has a very small specific work output. On the other hand, an Otto cycle, because the air and fuel are premixed, could have a very low compression ratio with the resultant low thermodynamic efficiency. Diesel therefore proposed a cycle consisting of two adiabatic processes: one constant-pressure and one constant-volume. Diesel disappeared in 1913 while crossing the English Channel during a storm.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4614-3532-7_12

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-3532-7_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bose, T. (2012). Introduction. In: Airbreathing Propulsion. Springer Aerospace Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3532-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3532-7_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3531-0

  • Online ISBN: 978-1-4614-3532-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics