Skip to main content

Surprise Detection in Multivariate Astronomical Data

  • Conference paper
  • First Online:
Statistical Challenges in Modern Astronomy V

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 902))

Abstract

Astronomers systematically study the sky with large sky surveys. A common feature of modern sky surveys is that they produce hundreds of terabytes (TB) up to 100 (or more) petabytes (PB) both in the image data archive and in the object catalogs. For example, the LSST will produce a 20–40 PB catalog database. Large sky surveys have enormous potential to enable countless astronomical discoveries. Such discoveries will span the full spectrum of statistics: from rare one-in-a-billion (or one-in-a-trillion) object types, to complete statistical and astrophysical specifications of many classes of objects (based upon millions of instances of each class). The growth in data volumes requires more effective knowledge discovery and extraction algorithms. Among these are algorithms for outlier (novelty/surprise/anomaly) detection. Outlier detection algorithms enable scientists to discover the most “interesting” scientific knowledge hidden within large and high-dimensional datasets: the “unknown unknowns”. Effective outlier detection is essential for rapid discovery of potentially interesting and/or hazardous events. Emerging unexpected conditions in hardware, software, or network resources need to be detected, characterized, and analyzed as soon as possible for obvious system health and safety reasons, just as emerging behaviors and variations in scientific targets should be similarly detected and characterized promptly in order to enable rapid decision support in response to such events. We have developed a new algorithm for outlier detection (KNN-DD: K-Nearest Neighbor Data Distributions). We have derived results from preliminary experiments in terms of the algorithm’s precision and recall for known outliers, and in terms of its ability to distinguish between characteristically different data distributions among different classes of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. J. Bayarri and J. O. Berger. Measures of Surprise in Bayesian Analysis. Downloaded from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6365, 1997.

  2. M. J. Bayarri and J. O. Berger. Quantifying Surprise in the Data and Model Verification. Downloaded from http://citeseer.ist.psu.edu/old/401333.html, 1998.

  3. B. Berriman, D. Kirkpatrick, R. Hanisch, A. Szalay, and R. Williams. Discovery of Brown Dwarfs with Virtual Observatories. IAU Joint Discussion 8: Large Telescopes and Virtual Observatory: Visions for the Future. http://adsabs.harvard.edu/abs/2003IAUJD...8E..60B

  4. K. Borne. Scientific Data Mining in Astronomy. Next Generation Data Mining. CRC Press: Taylor & Francis, Boca Raton, FL, pp. 91–114, 2009.

    Google Scholar 

  5. K. Borne. Effective Outlier Detection using K-Nearest Neighbor Data Distributions: Unsupervised Exploratory Mining of Non-Stationarity in Data Streams. Submitted to the Machine Learning Journal, March 2010.

    Google Scholar 

  6. M. Breunig, H.-P. Kriegel, R. Ng, and S. Sander. LOF: Identifying Density-Based Local Outliers. ACM SIGMOD Record, vol. 29, pp. 93–104, 2000.

    Article  Google Scholar 

  7. K. Das, K. Bhaduri, S. Arora, W. Griffin, K. Borne, C. Giannella, and H. Kargupta. Scalable Distributed Change Detection from Astronomy Data Streams using Eigen-Monitoring Algorithms. 2009 SIAM International Conference on Data Mining (SDM09), 2009.

    Google Scholar 

  8. D. L. Davies and D. W. Bouldin. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2): 224–227, 1979.

    Article  Google Scholar 

  9. M. Debruyne. An Outlier Map for Support Vector Machine Classification. Annals of Applied Statistics, 3(4): 1566–1580, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Dhaliwal, M. Bhatia, and P. Bansal, P. A Cluster-based Approach for Outlier Detection in Dynamic Data Streams (KORM: K-median OutlieR Miner). Journal of Computing, vol. 2, pp. 74–80, 2010.

    Google Scholar 

  11. S. G. Djorgovski and M. Davis. Fundamental Properties of Elliptical Galaxies. Astrophysical Journal, vol. 313, pp. 59–68, 1987.

    Article  Google Scholar 

  12. A. Dressler, D. Lynden-Bell, D. Burstein, R. L. Davies, S. M. Faber, R. Terlevich, and G. Wegner. Spectroscopy and Photometry of Elliptical Galaxies. I - A New Distance Estimator. Astrophysical Journal, vol. 313, pp. 42–58, 1987.

    Google Scholar 

  13. H. Dutta. Empowering Scientific Discovery by Distributed Data Mining on the Grid Infrastructure. Ph.D. dissertation, UMBC, 2007.

    Google Scholar 

  14. H. Dutta, C. Giannella, K. Borne, and H. Kargupta. Distributed Top-K Outlier Detection from Astronomy Catalogs using the DEMAC System. 2007 SIAM International Conference on Data Mining, 2007.

    Google Scholar 

  15. H. Dutta, C. Giannella, K. Borne, H. Kargupta, and R. Wolff. Distributed Data Mining for Astronomy Catalogs. IEEE Transactions in Knowledge and Data Engineering, 2009.

    Google Scholar 

  16. P. Filzmoser, R. Maronna, and M. Werner. Outlier Identification in High Dimensions. Computational Statistics and Data Analysis, 52, pp. 1694–1711, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Freitas On Objective Measures of Rule Surprisingness. LNCC, 1510, pp. 1–9, 1998.

    Google Scholar 

  18. V. Hautamaki, I. Karkkainen, and P. Franti. Outlier Detection Using k-Nearest Neighbour Graph. Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04), 2004.

    Google Scholar 

  19. C. R. Johnson, M. Glatter, W. Kendall, J. Huang, and F. Hoffman. Querying for Feature Extraction and Visualization in Climate Modeling. ICCS 2009, Part II, LNCS 5545, pp. 416–425, 2009.

    Google Scholar 

  20. G. I. G. Jozsa, M. A. Garrett, T. A. Oosterloo, H. Rampadarath, Z. Paragi, H. van Arkel, C. Lintott, W. C.Keel, K. Schawinski, and E. Edmondson. Revealing Hanny’s Voorwerp: Radio Observations of IC 2497. Astronomy and Astrophysics, vol. 500, pp. L33–L36, 2009.

    Article  Google Scholar 

  21. C. J. Lintott, et al. Galaxy Zoo: Morphologies Derived from Visual Inspection of Galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, vol. 389, pp. 1179–1189, 2008.

    Article  Google Scholar 

  22. R. A. Maronna and V. J. Yohai. The Behavior of the Stahel-Donoho Robust Multivariate Estimator. Journal of the American Statistical Association, vol. 90, pp. 330–341, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Pena and F. J. Prieto. Multivariate Outlier Detection and Robust Covariance Matrix Estimation. Technometrics, vol. 43, pp. 286–301, 2001.

    Article  MathSciNet  Google Scholar 

  24. D. Pokrajac, A. Lazarevic, and L. Latecki, L. Incremental Local Outlier Detection for Data Streams. IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2007.

    Google Scholar 

  25. G. T. Richards, et al. Eight-Dimensional Mid-Infrared/Optical Bayesian Quasar Selection. Astronomical Journal, vol. 137, pp. 3884–3899, 2009.

    Article  Google Scholar 

  26. V. Saltenis. Outlier Detection Based on the Distribution of Distances between Data Points. Informatica, 15(3): 399–410, 2004.

    MathSciNet  Google Scholar 

  27. R.-D. Scholz, M. J. McCaughrean, N. Lodieu, and B. Kuhlbrodt. Epsilon Indi B: A New Benchmark T Dwarf. Astronomy and Astrophysics, vol. 398, pp. L29–L33, 2003.

    Article  Google Scholar 

  28. A. A. Shabalin, V. J. Weigman, C. M. Perou, and A. B. Nobel. Finding Large Average Submatrices in High Dimensional Data. Annals of Applied Statistics, 3(3): 985–1012, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples). Biometrika, vol. 52, pp. 591–611, 1965.

    MathSciNet  MATH  Google Scholar 

  30. P. Smyth and R. M. Goodman. Rule Induction Using Information Theory. Knowledge Discovery in Databases, pp 159–176, AAAI/MIT Press, 1991.

    Google Scholar 

  31. S. Srinoy and W. Kurutach. Anomaly Detection Model Based on Bio-Inspired Algorithm and Independent Component Analysis. TENCON 2006, IEEE Region 10 Conference proceedings, pp. 1–4, 2006.

    Google Scholar 

  32. Weaver’s Surprise Index. Encyclopedia of Statistical Sciences (Wiley), vol. 9, pp. 104–109, 1988.

    Google Scholar 

  33. N. Zakamska, et al. Candidate Type II Quasars from the Sloan Digital Sky Survey. I. Selection and Optical Properties. Astronomical Journal, vol. 126, pp. 2125–2143, 2003.

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by NASA AISR grant number NNX07AV70G and in part by NASA through the American Astronomical Society’s Small Research Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk D. Borne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Borne, K.D., Vedachalam, A. (2012). Surprise Detection in Multivariate Astronomical Data. In: Feigelson, E., Babu, G. (eds) Statistical Challenges in Modern Astronomy V. Lecture Notes in Statistics(), vol 902. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3520-4_26

Download citation

Publish with us

Policies and ethics