Skip to main content

Modeling of Intermittent Connectivity in Opportunistic Networks: The Case of Vehicular Ad hoc Networks

  • Chapter
  • First Online:
Routing in Opportunistic Networks

Abstract

This chapter analyses connectivity issues in a particular type of opportunistic networks: Vehicular Ad hoc NETworks (VANETs). The features of opportunistic networks well-fit VANETs, characterized by connectivity disruptions occurring due to quick network topology changes, high vehicle speed and variable vehicle densities. VANETs provide both intervehicle and vehicle-to-network-infrastructure communications. Vehicle-to-vehicle communications may not be the most appropriate interconnection scheme for data delivery in sparse or totally disconnected scenarios. Vehicle-to-infrastructure communications represent a viable solution to bridge the inherent network fragmentation that may exist in multi-hop networks formed over moving vehicles, but a ubiquitous roadside infrastructure can incur prohibitive deployment and maintenance costs. In this chapter, we present recent related work focusing on vehicular connectivity models and review hybrid and opportunistic vehicular communication paradigms designed to improve connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pelusi L, Passerella A, Conti A (2006) Opportunistic networking: data forwarding in disconnected mobile ad Hoc networks IEEE Commun Mag 44(11):134–141

    Google Scholar 

  2. Perkins CE, Belding-Royer EM, Das S (2003) Ad hoc on demand distance vector (AODV) routing, IETF, RFC 3561

    Google Scholar 

  3. Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of special interest group on data communications, Karlsruhe, Germany, pp 27–34, Aug 2003

    Google Scholar 

  4. Song L, Kotz DF (2007) Evaluating opportunistic routing protocols with large realistic contact traces, In: Proceedings of CHANTS ’07, Montréal, Québec, Canada, Sept 2007

    Google Scholar 

  5. Eisenman SB, Lane ND, Campbell AT (2008) Techniques for improving opportunistic sensor networking performance. In: Proceedings of the 4th IEEE international conference on distributed computing in sensor systems, pp 157–175

    Google Scholar 

  6. Hui P et al (2005) Pocket switched networks and human mobility in conference environments. In: Proceedings of ACM SIGCOMM workshop on delay tolerant networking, pp 244–251, Aug 2005

    Google Scholar 

  7. Leontiadis I, Mascolo C (2007) Opportunistic spatio-temporal dissemination system for vehicular networks. In: Proceedings of MobiOpp 2007

    Google Scholar 

  8. Harteinstein H, Labertaux KP (eds) (2010) VANET vehicular applications and inter-networking technologies. Wiley, Chichester

    Google Scholar 

  9. Papadimitratos P et al (Nov. 2009) Vehicular communication systems: enabling technologies, applications and future outlook on intelligent transportation. IEEE Commun Mag 47(11):84–95

    Article  Google Scholar 

  10. Fiore M, Harri J (2008) The networking shape of vehicular mobility. In: Proceedings of ACM international symposium on mobile ad hoc networking and computing, pp 261–272

    Google Scholar 

  11. Boban M, Misek G, Tonguz OK (2008) What is the best achievable QoS for unicast routing in VANETs. In: Proceedings of IEEE global communications conference, pp 1–10

    Google Scholar 

  12. Conceicao H, Ferreira M, Barros J (2009) A cautionary view of mobility and connectivity modeling in vehicular ad-hoc networks. In: Proceedings of IEEE vehicular technology conference, pp 1–5

    Google Scholar 

  13. Wu H et al (2005) Simulated vehicle-to-vehicle message propagation efficiency on Atlanta’s I75 corridor. In: Proceedings of transportation research board conference, Washington, D.C.

    Google Scholar 

  14. Kafsi M et al (2008) VANET connectivity analysis. In: Proceedings of IEEE workshop on automotive networking and applications

    Google Scholar 

  15. Agarwal A, Little TDC (2010) Opportunistic networking in delay tolerant vehicular ad hoc networks. In: Watfa M (ed) Advances in vehicular ad-hoc networks: developments and challenges, pp 282–300. IGI Global, Hershey

    Google Scholar 

  16. Vegni AM, Stramacci A, Natalizio E (2012) SRB: a selective reliable broadcast protocol for safety applications in VANET. In: Proceedings of international conference on selected topics in mobile & wireless networking (iCOST, 2012), Avignon, France, July 2–4

    Google Scholar 

  17. El-Atty SMA, Stamatiou GK (2010) Performance analysis of Multihop Connectivity in VANET. In: Proceedings of 7th international symposium on wireless communication systems, pp 335–339, Sept 2010

    Google Scholar 

  18. Jin WL, Recker WR (Jan. 2010) An analytical model of multihop connectivity of inter-vehicle communication systems. IEEE Trans Veh Technol 9(1):106–112

    Google Scholar 

  19. Jin X, Su W, Wei Y (2011) Quantitative analysis of the VANET connectivity: theory and application. In: IEEE 73rd vehicular technology conference (VTC Spring), pp 1–5, May 2011

    Google Scholar 

  20. Mylonas Y, Pitsillides A, Lestas M (2008) Speed adaptive probabilistic flooding in VANETs. In: Proceedings of international trade and freight transportation conference, pp 66–73

    Google Scholar 

  21. Ho IWH, Leung KK, Polak JW (Feb. 2011) Stochastic model and connectivity dynamics for VANETs in signalized road systems. IEEE/ACM Trans Networking 19(1):195–208

    Article  Google Scholar 

  22. Yousefi S, Altman E, El-Azouzi R, Fathy M (2008) Analytical model for connectivity in vehicular ad hoc networks. IEEE Trans Veh Technol 57(6):3341–3356

    Article  Google Scholar 

  23. Viriyasitavat W, Bai F, Tonguz OK (Jan. 2011) Dynamics of network connectivity in urban vehicular networks. IEEE J Sel Areas Commun 29(1):515–533

    Article  Google Scholar 

  24. Hasan SF, Ding X, Siddique NH, Chakraborty S (Jan. 2011) Measuring disruption in vehicular communications. IEEE Trans Veh Technol 60(1):148–159

    Article  Google Scholar 

  25. Zheng Z, Sinha P, Kumar S (2012) Sparse Wi-Fi deployment for vehicular internet access with bounded interconnection gap. IEEE/ACM Trans Networking 20:956–969

    Google Scholar 

  26. Ng SC et al (Jan. 2011) Analysis of access and connectivity probabilities in vehicular relay networks. IEEE J Sel Areas Commun 29(1):140–150

    Article  Google Scholar 

  27. Abdrabou A, Zhuang W (Jan. 2011) Probabilistic delay control and road side unit placement for vehicular ad hoc networks with disrupted connectivity. IEEE J Sel Areas Commun 29(1):129–139

    Article  Google Scholar 

  28. Agarwal A, Little TDC (2008) Access point placement in vehicular networking. In: Proceedings of 1st international conference on wireless access in vehicular environments, Troy, MI, Dec 2008

    Google Scholar 

  29. Jin W-L, Wang H-J (2008) Modeling connectivity of inter-vehicle communication systems with road-side stations. Open Transp J 2:1–6

    Article  MathSciNet  Google Scholar 

  30. IEEE Std. 802.11p (2010) Wireless access in vehicular environments, July 2010

    Google Scholar 

  31. Uzcategui R, Acosta-Marum G (2009) WAVE: a tutorial. IEEE Commun Mag 47(5):126–133

    Article  Google Scholar 

  32. Ott J, Kutscher D (2004) Drive-thru internet: IEEE 802.11b for automobile users. In: Proceedings of annual joint conference of the IEEE computer and communications societies, INFOCOM, Hong Kong, Mar 2004

    Google Scholar 

  33. Dong X et al (2006) Expediting vehicle infrastructure integration (EVII). Technical report, California PATH Research Report

    Google Scholar 

  34. Broch J et al (1998) A performance comparison of multi-hop wireless ad hoc network routing protocols. In: Proceedings of ACM MobiCom, pp 85–97

    Google Scholar 

  35. Roess RP, Prassas ES, McShane WR (2004) Traffic engineering, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  36. Fricker JD, Whitford RK (2004) Fundamentals of transportation engineering: a multimodal systems approach. Prentice Hall, Upper Saddle River

    Google Scholar 

  37. Tonguz O et al (2007) Broadcasting in VANET. In: Proceedings of mobile networking for vehicular environments, pp 7–12, Anchorage, AK

    Google Scholar 

  38. Artimy M, Robertson W, Phillips W (2004) Assignment of dynamic transmission range based on estimation of vehicle density. In: Proceedings of the 1st ACM international workshop on vehicular ad hoc networks, Philadelphia, Pennsylvania, Oct 2004

    Google Scholar 

  39. Rappaport TS (2001) Wireless communications: principles and practice, 2nd Edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  40. Zang Y et al (2005) An error model for inter-vehicle communications in highway scenarios at 5.9 GHz. In: Proceedings of ACM PE-WASUN, Montreal

    Google Scholar 

  41. Taliwal V et al (2004) Empirical determination of channel characteristics for DSRC vehicle-to-vehicle communication. In: Proceedings of ACM VANET

    Google Scholar 

  42. Giordano E, Frank R, Pau G, Gerla M (2010) CORNER: a realistic urban propagation model for VANET. In: Proceedings of WONS

    Google Scholar 

  43. Campolo C et al (2011) Vehicular connectivity in urban scenarios: effectiveness and potential of roadside, moving WAVE providers and hybrid solutions. EURASIP J Wirel Commun Networking 146. doi:10.1186/1687-1499-2011-146, Published October 28

  44. Boban M et al (2011) Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE J Sel Areas Commun 29(1):15–28

    Article  Google Scholar 

  45. Chiara BD, Deflorio F, Diwan S (2009) Assessing the effects of inter-vehicle communication systems on road safety. IET Intell Transp Syst 3(2):225–235

    Article  Google Scholar 

  46. Moustafa H, Zhang Y (eds) (2009) Vehicular networks: techniques. Standards and applications. Auerbach publishers, Taylor and Francis Group, USA

    Google Scholar 

  47. Wisitpongphan N et al (2007) Broadcast storm mitigation techniques in vehicular ad hoc wireless networks. IEEE Wirel Commun Mag 14:84–94

    Google Scholar 

  48. Wisitpongphan N, Bai F, Mudalige P, Tonguz OK (2007) On the routing problem in disconnected vehicular ad-hoc networks. In: Proceedings of IEEE international conference on computer communications (INFOCOM ’07), pp 2291–2295, May 2007

    Google Scholar 

  49. Ross SM (2004) Introduction to probability models. Academic Press, New York

    Google Scholar 

  50. Grimmett G (1989) Percolation, 1 edn. Springer-Verlag, New York

    Google Scholar 

  51. Miorandi D, Altman E (2006) Connectivity in one-dimensional ad hoc networks: a queuing theoretical approach. Wirel Netw 12(6):573–587

    Article  Google Scholar 

  52. Tonguz OK, Viriyasitavat W, Bai F (2009) Modeling urban traffic: a cellular automata approach. IEEE Commun Mag 47(5):142–150

    Article  Google Scholar 

  53. Bychkovsky V et al (2006) A measurement study of vehicular internet access using in situ Wi-Fi networks. In: Proceedings of ACM annual international conference on mobile computing and networking, Los Angeles, CA, USA, Sept 2006

    Google Scholar 

  54. Esposito F, Vegni AM, Matta I, Neri A (2010) On modeling speed-based vertical handovers in vehicular networks—dad, slow down, I am watching the movie—. In: Proceedings of IEEE Globecom workshop on seamless wireless mobility, Miami, FL, USA

    Google Scholar 

  55. Spyropoulos T, Psounis K, Raghavendra C (2005) Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of ACM SIGCOMM workshop on delay-tolerant networking, PA, USA

    Google Scholar 

  56. Resta G, Santi P, Simon J (2007) Analysis of multi-hop emergency message propagation in vehicular ad hoc networks. In: Proceedings of the 8th ACM international symposium on mobile ad hoc networking and computing, Montreal, Canada, pp 140–149

    Google Scholar 

  57. Briesemeister L, Schafers L, Hommel G (2000) Disseminating messages among highly mobile hosts based on inter-vehicle communication. In: Proceedings of IEEE intelligent vehicles symposium, pp 522–27, Oct 2000

    Google Scholar 

  58. Jin W-L, Recker WW (Mar. 2006) Instantaneous information propagation in a traffic stream through inter-vehicle communication. Transp Res Part B Methodol 40(3):230–250

    Article  Google Scholar 

  59. Vegni AM, Little TDC (2011) Hybrid vehicular communications based on V2V–V2I protocol switching. IJVICS 2(3/4):213–231

    Google Scholar 

  60. Gerla M et al (2006) Vehicular grid communications: the role of the internet infrastructure. In: Proceedings of wireless internet conference, Boston

    Google Scholar 

  61. Marfia G et al (2007) Evaluating vehicle network strategies for downtown Portland: opportunistic infrastructure and importance of realistic mobility models. In: Proceediings of MobiOpp 2007, Porto Rico

    Google Scholar 

  62. Mejri N, Kamounh N, Filali F (2010) Cooperative infrastructure discovery through V2X communication. In: Proceedings of 9th IFIP annual mediterranean ad hoc networking workshop, pp 1–8, June 2010

    Google Scholar 

  63. Wedel JW, Schunemann B, Radusch I (2009) V2X-based traffic congestion recognition and avoidance. In: Proceedings of 10th international symposium on pervasive systems, Algorithms and networks, pp 637–641, Dec 2009

    Google Scholar 

  64. Jeongwook S, Kyungwon P, Wongi J, Dong KK (2009) Performance evaluation of V2X communications in practical small-scale fading models. In: Proceedings of IEEE 20th international symposium on personal, indoor and mobile radio communications, pp 2434–2438, Sept 2009

    Google Scholar 

  65. Mostafa A et al (2011) A V2X-based approach for reduction of delay propagation in vehicular ad-hoc networks. In: Proceedings of international workshop on seamless connectivity in vehicular networks, Saint-Petersburg, Russia, Aug 2011

    Google Scholar 

  66. Mostafa A, Vegni AM, Oliveira T, Little TDC, Agrawal DP (2012) QoSHVCP: hybrid vehicular communications protocol with QoS priorization for safety applications. ISRN Commun Networking 2012:14

    Google Scholar 

  67. Mershad K, Artail H, Gerla M (May 2012) ROAMER: roadside units as message routes in VANETs. Ad Hoc Netw 10(3):479–496

    Article  Google Scholar 

  68. Zhao J, Arnold T, Zhang Y, Cao G (2008) Extending drive-thru data access by vehicle-to-vehicle relay. In: Proceedings of ACM international workshop on vehicular inter-NETworking, VANET, San Francisco, CA, USA, Sept 2008

    Google Scholar 

  69. Yoo J, Choi SC, Gerla M (2010) An opportunistic relay protocol for vehicular road-side access with fading channels. In: Proceedings of IEEE international conference on network protocols, ICNP, Kyoto, Japan, Oct 2010

    Google Scholar 

  70. Campolo C, Molinaro A (2011) Improving V2R connectivity to provide ITS applications in IEEE 802.11p/WAVE VANETs. In: Proceedings of ICT 2011, Ayia Napa, Cyprus

    Google Scholar 

  71. Vegni AM, Vegni C, Little TDC (2010) Opportunistic vehicular networks by satellite links for safety applications. In: Proceedings of the fully networked car workshop. Geneva International Motor Show, Geneva, Switzerland, Mar 2010

    Google Scholar 

  72. Murthy ASN, Mohle HR (2000) Transportation engineering basics. American Society of Civil Engineers, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Vegni .

Editor information

Editors and Affiliations

7.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vegni, A.M., Campolo, C., Molinaro, A., Little, T.D. (2013). Modeling of Intermittent Connectivity in Opportunistic Networks: The Case of Vehicular Ad hoc Networks. In: Woungang, I., Dhurandher, S., Anpalagan, A., Vasilakos, A. (eds) Routing in Opportunistic Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3514-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3514-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3513-6

  • Online ISBN: 978-1-4614-3514-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics