# The Hyers–Ulam and Hahn–Banach Theorems and Some Elementary Operations on Relations Motivated by Their Set-Valued Generalizations

Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 68)

## Abstract

In the first part of this paper, we provide several historical facts on the famous Hyers–Ulam stability theorems, Hahn–Banach extension theorems, and their set-valued generalizations with numerous references.

These generalizations will clearly show that the essence of the above mentioned theorems is nothing but the statement of the existence of a certain homogeneous, additive, or linear selection function of a particular relation.

In the second part of this paper, motivated by the above generalizations, we briefly review the most basic additivity and homogeneity properties of relations and investigate, in greater detail, some elementary operations on relations.

More concretely, for any relation F on one group X to another Y, we define two relations −F and $$\check{F}$$ on X to Y such that $$\check{F}(x)=F(-x)$$ and (−F)(x)=−F(x) for all xX. Moreover, we also define $$\hat{F}=-\check{F}$$ and $$F^{\vartriangle}= F\cap\hat{F}$$.

Furthermore, if in particular Y is a vector space over ℚ, then for any k∈ℤ, with k≠0, we also define a relation F k on X to Y such that F k (x)=k −1 F(kx) for all xX. Moreover, we also define $$F^{\star}=\bigcap_{ n=1}^{\infty} F_{n}$$ and $$F^{\ast}=F^{\vartriangle\star}$$.

The above operations and the intersection convolutions of relations, which can only be sketched here, will certainly allow of instructive treatments of some hoped-for common relational generalizations of the Hyers–Ulam and Hahn–Banach theorems.

### Key words

Relations on groups Partial and global negatives Hyers transforms Intersection convolutions

### Mathematics Subject Classification

03E20 26E25 39B82 46A22

## Notes

### Acknowledgements

The author is indebted to J. Horváth and Th.M. Rassias for several valuable pieces of advice.

Moreover, the author would also like to thank R. Ger, M. Sablik, Zs. Páles, and G. Horváth for some helpful discussions.

### References1

1. 1.
Abreu, J., Etcheberry, A.: Hahn–Banach and Banach–Steinhaus theorems for convex processes. Period. Math. Hung. 20, 289–297 (1989)
2. 2.
Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge University Press, Cambridge York (1989)
3. 3.
Adasch, N.: Der satz über offene lineare relationen in topologischen vectoräumen. Note Mat. 11, 1–5 (1991)
4. 4.
Álvarez, T.: On the Browder essential sprectum of a linear relation. Publ. Math. (Debr.) 73, 145–154 (2008)
5. 5.
Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 491–495 (1950) Google Scholar
6. 6.
Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1961)
7. 7.
Bahyrycz, A.: Forti’s example of an unstable homomorphism equation. Aequ. Math. 74, 310–313 (2007)
8. 8.
Badora, R.: On some generalized invariant means and their application to the stability of the Hyers–Ulam type. Ann. Pol. Math. 58, 111–126 (1993)
9. 9.
Badora, R.: On approximately additive functions. Ann. Math. Sil. 8, 111–126 (1994)
10. 10.
Badora, R.: On the Hahn–Banach theorem for groups. Arch. Math. 86, 517–528 (2006)
11. 11.
Badora, R., Ger, R., Páles, Zs.: Additive selections and the stability of the Cauchy functional equation. ANZIAM J. 44, 323–337 (2003)
12. 12.
Baker, J.A.: On some mathematical characters. Glas. Mat. 25, 319–328 (1990) Google Scholar
13. 13.
Baker, J.A.: The stability of certain functional equations. Proc. Am. Math. Soc. 112, 729–732 (1991)
14. 14.
Banach, S.: Sur les fonctionelles linéaires I–II. Stud. Math. 1, 211–216, 223–239 (1929)
15. 15.
Banach, S.: Théorie des Opérations Linéaires. Druk M. Garasiński, Warsawa (1932) Google Scholar
16. 16.
Banach, S., Mazur, S.: Zur theorie der linearen dimension. Stud. Math. 4, 100–112 (1933) Google Scholar
17. 17.
Baron, K.: Functions with differences in subspaces. In: Proceedings of the 18th International Symposium on Functional Equations, Faculty of Mathematics, pp. 8–9. University of Waterloo (1980) Google Scholar
18. 18.
Baron, K.: A remark on the stability of the Cauchy equation. Rocz. Nauk.-Dydakt. Pr. Mat. 11, 7–12 (1985) Google Scholar
19. 19.
Baron, K., Kannappan, Pl.: On the Pexider difference. Fundam. Math. 134, 247–254 (1990)
20. 20.
Baron, K., Volkmann, P.: On functions close to homomorphisms between square symmetric structures. Seminar LV 14, 1–12 (2002). http://www.mathematik.uni-karlsruhe.de/~semlv Google Scholar
21. 21.
Baron, K., Simon, A., Volkmann, P.: On functions having Cauchy differences in some prescribed sets. Aequ. Math. 52, 254–259 (1996)
22. 22.
Baron, K., Sablik, M., Volkmann, P.: On decent solutions of a functional congruence. Rocz. Nauk.-Dydakt. Pr. Mat. 17, 27–40 (2000)
23. 23.
Beg, I.: Fuzzy multivalued functions. Bull. Allahabad Math. Soc. 21, 41–104 (2006)
24. 24.
Berge, C.: Topological Spaces Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity. Oliver and Boyd, London (1963)
25. 25.
Berz, E.: Sublinear functions on ℝ. Aequ. Math. 12, 200–206 (1975)
26. 26.
Boccuto, A., Candeloro, D.: Sandwich theorems and applications to invariant measures. Atti Sem. Math. Fis. Univ. Modena 38, 511–524 (1990)
27. 27.
Bohnenblust, H.F., Sobczyk, A.: Extensions of functionals on complex linear spaces. Bull. Am. Math. Soc. 44, 91–93 (1938) Google Scholar
28. 28.
Boros, Z.: Stability of the Cauchy equation in ordered fields. Math. Pannon. 11, 191–197 (2000)
29. 29.
Boros, Z., Száz, Á.: Reflexivity, transitivity, symmetry, and antisymmetry of the intersection convolution of relations. Rostock. Math. Kolloq. 63, 55–62 (2008)
30. 30.
Bourgin, D.G.: Clases of transformations and bordering transformations. Bull. Am. Math. Soc. 57, 223–237 (1951)
31. 31.
Brzdek, J.: On the Cauchy difference. Glas. Mat. 27, 263–269 (1992)
32. 32.
Brzdek, J.: On a method of proving the Hyers–Ulam stability of functional equations on restricted domains. Aust. J. Math. Anal. Appl. 6, 1–10 (2009). Article 4
33. 33.
Brzdek, J., Tabor, J.: Stability of the Cauchy congruence on restricted domain. Arch. Math. 82, 546–550 (2004)
34. 34.
Brzdek, J., Popa, D., Xu, B.: Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal. 74, 324–330 (2011)
35. 35.
Burai, P., Száz, Á.: Relationships between homogeneity, subadditivity and convexity properties. Publ. Elektroteh. Fak. Univ. Beogr., Mat. 16, 77–87 (2005) Google Scholar
36. 36.
Buskes, G.: The Hahn–Banach theorem surveyed. Diss. Math. 327, 1–49 (1993)
37. 37.
Chu, H.-Y., Kang, D.S., Rassias, Th.M.: On the stability of a mixed n-dimensional quadratic functional equation. Bull. Belg. Math. Soc. 15, 9–24 (2008)
38. 38.
Castillo, E., Ruiz-Cobo, M.R.: Functional Equations and Modelling in Science and Engineering. Dekker, New York (1992)
39. 39.
Coddington, E.A.: Extension theory of formally normal and symmetric subspaces. Mem. Am. Math. Soc. 134, 5–7 (1973)
40. 40.
Coddington, E.A., Dijksma, A.: Adjoint subspaces in Banach spaces with applications to ordinary differential subspaces. Ann. Mat. Pura Appl. 118, 1–118 (1978)
41. 41.
Cross, R.: Multivalued Linear Operators. Dekker, New York (1998)
42. 42.
Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific, London (2002)
43. 43.
Czerwik, S. (ed.): Stability of Functional Equations of Ulam–Hyers–Rassias Type. Hadronic Press, Palm Harbor (2003) Google Scholar
44. 44.
Czerwik, S., Król, K.: Ulam stability of functional equations. Aust. J. Math. Anal. Appl. 6, 1–15 (2009). Article 6
45. 45.
Dacić, R.: On multi-valued functions. Publ. Inst. Math. (Belgr.) 9, 5–7 (1969) Google Scholar
46. 46.
Dascǎl, J., Száz, Á.: Inclusion properties of the intersection convolution of relations. Ann. Math. Inform. 36, 47–60 (2009)
47. 47.
Dascǎl, J., Száz, Á.: A necessary condition for the extensions of subadditive partial selection relations. Tech. Rep., Inst. Math., Univ. Debrecen 1, 1–13 (2009) Google Scholar
48. 48.
Faziev, V.A., Rassias, Th.M.: The space of (ψ,ν)-pseudocharacters on semigroups. Nonlinear Funct. Anal. Appl. 5, 107–126 (2000) Google Scholar
49. 49.
Faziev, V.A., Rassias, Th.M., Sahoo, P.K.: The space of (ψ,ν)-additive mappings onsemigroups. Trans. Am. Math. Soc. 354, 4455–4472 (2002) Google Scholar
50. 50.
Farkas, T., Száz, Á.: Minkowski functionals of summative sequences of absorbing and balanced sets. Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Fasc. Mat.-Inform. 16, 323–334 (2000)
51. 51.
Fechner, W.: Separation theorems for conditional functional equations. Ann. Math. Sil. 21, 31–40 (2007)
52. 52.
Fechner, W.: On an abstract version of a functional inequality. Math. Inequal. Appl. 11, 381–392 (2008)
53. 53.
Figula, A., Száz, Á.: Graphical relationships between the infimum and the intersection convolutions. Math. Pannon. 21, 23–35 (2010)
54. 54.
Findlay, G.D.: Reflexive holomorphic relations. Can. Math. Bull. 3, 131–132 (1960)
55. 55.
Forti, G.L.: An existence and stability theorem for a class of functional equations. Stohastica 4, 23–30 (1980)
56. 56.
Forti, G.L.: Remark 11. Aequ. Math. 29, 90–91 (1985)
57. 57.
Forti, G.L.: The stability of homomorphisms and amenability, with applications to functional equations. Abh. Math. Sem. Univ. Hamburg 57, 215–226 (1987)
58. 58.
Forti, G.L.: Hyers–Ulam stability of functional equations in several variables. Aequ. Math. 50, 143–190 (1995)
59. 59.
Forti, G.L.: Comments on the core of the direct method for proving Hyers–Ulam stability of functional equations. J. Math. Anal. Appl. Aequ. Math. 295, 127–133 (2004)
60. 60.
Forti, G.L., Schwaiger, J.: Stability of homomorphisms and completeness. C. R. Math. Rep. Acad. Sci. Can. 11, 215–220 (1989)
61. 61.
Fuchssteiner, B.: Sandwich theorems and lattice semigroups. J. Funct. Anal. 16, 1–14 (1974)
62. 62.
Fuchssteiner, B., Horváth, J.: Die Bedeutung der Schnitteigenschaften beim Hahn–Banachschen Satz, Jahrbuch Überblicke Math, pp. 107–121. Bibliograph. Inst., Mannheim (1979). (The publication of an expanded English version of this paper in the Publ. Math. Debrecen was prevented in 1997 by the Editorial Board headed by L. Tamássy) Google Scholar
63. 63.
Fuchssteiner, B., Lusky, W.: Convex Cones. North-Holland, New York (1981)
64. 64.
Fullerton, R.E.: An intersection property for cones in a linear space. Proc. Am. Math. Soc. 9, 558–561 (1958)
65. 65.
Gajda, Z.: On stability of the Cauchy equation on semigroups. Aequ. Math. 36, 76–79 (1988)
66. 66.
Gajda, Z.: On stability of additive mappings. Int. J. Math. Sci. 14, 431–434 (1991)
67. 67.
Gajda, Z.: Invariant means and representations of semigroups in the theory of functional equations. Pr. Nauk. Uniw. Ślask. Katowic. 1273, 1–81 (1992)
68. 68.
Gajda, Z.: Sandwich theorems and amenable semigroups of transformations. Grazer Math. Ber. 316, 43–58 (1992)
69. 69.
Gajda, Z., Ger, R.: Subadditive multifunctions and Hyers–Ulam stability. In: Walter, W. (ed.) General Inequalities 5. Internat. Ser. Numer. Math., vol. 80, pp. 281–291. Birkhäuser, Basel (1987) Google Scholar
70. 70.
Gajda, Z., Kominek, Z.: On separation theorems for subadditive and superadditive functionals. Stud. Math. 100, 25–38 (1991)
71. 71.
Gajda, Z., Smajdor, A., Smajdor, W.: A theorem of the Hahn–Banach type and its applications. Ann. Pol. Math. 57, 243–252 (1992)
72. 72.
Gǎvruţǎ, P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)
73. 73.
Gǎvruţǎ, P.: On a problem of G. Isac and Th.M. Rassias concerning the stability of mappings. J. Math. Anal. Appl. 261, 543–553 (2001)
74. 74.
Gǎvruta, P., Gǎvruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability. Int. J. Nonlinear Anal. Appl. 1, 11–18 (2010) Google Scholar
75. 75.
Gǎvruta, P., Hossu, M., Popescu, D., Cǎprǎu, C.: On the stability of mappings and an answer to a problem of Th.M. Rassias. Ann. Math. Blaise Pascal 2, 55–60 (1995)
76. 76.
Ger, R.: The singular case in the stability behaviour of linear mappings. Grazer Math. Ber. 316, 59–70 (1992)
77. 77.
Ger, R.: On a factorization of mappings with a prescribed behavior of the Cauchy difference. Ann. Math. Sil. 8, 147–155 (1994)
78. 78.
Ger, R.: A survey of recent results on stability of functional equations. In: Proceedings of the 4th International Conference on Functional Equations and Inequalities, pp. 5–36. Pedagogical University of Krakow (1994) Google Scholar
79. 79.
Ger, R., Volkmann, P.: On sums of linear and bounded mappings. Abh. Math. Semin. Univ. Hamb. 68, 103–108 (1998)
80. 80.
Gilányi, A., Kaiser, Z., Páles, Zs.: Estimates to the stability of functional equations. Aequ. Math. 73, 125–143 (2007)
81. 81.
Glavosits, T., Kézi, Cs.: On the domain of oddness of an infimal convolution. Miskolc Math. Notes 12, 31–40 (2011)
82. 82.
Glavosits, T., Száz, Á.: Pointwise and global sums and negatives of binary relations. An. St., Univ. Ovidius Constanta 11, 87–94 (2003) Google Scholar
83. 83.
Glavosits, T., Száz, Á.: Pointwise and global sums and negatives of translation relations. An. St., Univ. Ovidius Constanta 12, 27–44 (2004)
84. 84.
Glavosits, T., Száz, Á.: On the existence of odd selections. Adv. Stud. Contemp. Math. (Kyungshang) 8, 155–164 (2004)
85. 85.
Glavosits, T., Száz, Á.: General conditions for the subadditivity and superadditivity of relations. Scientia, Ser. A, Math. Sci. 11, 31–43 (2005)
86. 86.
Glavosits, T., Száz, Á.: Constructions and extensions of free and controlled additive relations. Tech. Rep., Inst. Math., Univ. Debrecen 1, 1–49 (2010) Google Scholar
87. 87.
Glavosits, T., Száz, Á.: The infimal convolution can be used to easily prove the classical Hahn–Banach theorem. Rostock. Math. Kolloq. 65, 71–83 (2010)
88. 88.
Glavosits, T., Száz, Á.: The generalized infimal convolution can be used naturally prove some dominated monotone additive extension theorems. Tech. Rep., Inst. Math., Univ. Debrecen 4, 1–26 (2010) Google Scholar
89. 89.
Glavosits, T., Száz, Á.: A Hahn–Banach type generalization of the Hyers–Ulam theorem. An. St., Univ. Ovidius Constanta 19, 139–144 (2011)
90. 90.
Godini, G.: Set-valued Cauchy functional equation. Rev. Roum. Math. Pures Appl. 20, 1113–1121 (1975)
91. 91.
Godini, G.: An approach to generalizing Banach spaces: normed almost linear spaces. Rend. Circ. Mat. Palermo, Suppl. 5, 33–50 (1984)
92. 92.
Grabiec, A.: The generalized Hyers–Ulam stability of a class of functional equations. Publ. Math. (Debr.) 48, 217–235 (1996)
93. 93.
Gselmann, E., Száz, Á.: An instructive treatment of a generalization of Gǎvruţǎ’s stability theorem. Sarajevo J. Math. 6, 3–21 (2010)
94. 94.
Hahn, H.: Über lineare Gleichungsysteme in linearen Räumen. J. Reine Angew. Math. 157, 214–229 (1927)
95. 95.
Harrop, R., Weston, J.D.: An intersection property in locally convex spaces. Proc. Am. Math. Soc. 7, 535–538 (1956)
96. 96.
Harte, R.E.: A generalization of the Hahn–Banach theorem. J. Lond. Math. Soc. 40, 283–287 (1965)
97. 97.
Hassi, S., Sebestyén, Z., De Snoo, H.S.V., Szafraniec, F.H.: A canonical decomposition for linear operators and linear relations. Acta Math. Hung. 115, 281–307 (2007)
98. 98.
Hasumi, M.: The extension property of complex Banach spaces. Tohoku Math. J. 10, 135–142 (1958)
99. 99.
Helly, E.: Über lineare Functionaloperationen. Sitzungsber. Acad. Wiss. Wien 121, 265–297 (1912)
100. 100.
Henney, D.: The structure of set-valued additive functions. Port. Math. 26, 463–471 (1967)
101. 101.
Henney, D.: Properties of set-valued additive functions. Am. Math. Mon. 75, 203–206 (1968)
102. 102.
Henney, D.: Representations of set-valued additive functions. Aequ. Math. 3, 230–235 (1969)
103. 103.
Hochstadt, H.: Eduard Helly, father of the Hahn–Banach theorem. Math. Intell. 2, 123–125 (1980)
104. 104.
Holá, L’.: Some properties of almost continuous linear relations. Acta Math. Univ. Comen. 50–51, 61–69 (1987) Google Scholar
105. 105.
Holá, L’., Kupka, I.: Closed graph and open mapping theorems for linear relations. Acta Math. Univ. Comen. 46–47, 157–162 (1985) Google Scholar
106. 106.
Holá, L’., Maličký, P.: Continuous linear selectors of linear relations. Acta Math. Univ. Comen. 48–49, 153–157 (1986) Google Scholar
107. 107.
Holbrook, J.A.R.: Concerning the Hahn–Banach theorem. Proc. Am. Math. Soc. 50, 322–327 (1975)
108. 108.
Horváth, J.: Some selected results of Professor Baltasar Rodríguez-Salinas. Rev. Mat. Univ. Complut. Madr. 9, 23–72 (1996)
109. 109.
Huang, J., Li, Y.: The Hahn–Banach theorem on arbitrary groups. Kyungpook Math. J. 49, 245–254 (2009)
110. 110.
Hustad, O.: A note on complex Open image in new window spaces. Isr. J. Math. 16, 117–119 (1973)
111. 111.
Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
112. 112.
Hyers, D.H.: The stability of homomorphisms and related topics. In: Rassias, Th.M. (ed.) Global Analysis on manifolds. Teubner-Texte Math., vol. 57, pp. 140–153, Leipzig (1983) Google Scholar
113. 113.
Hyers, D.H., Rassias, Th.M.: Approximate homomorphisms. Aequ. Math. 44, 125–153 (1992)
114. 114.
Hyers, D.H., Isac, G., Rassias, Th.M.: Topics in Nonlinear Analysis and Applications. World Scientific, London (1997)
115. 115.
Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)
116. 116.
Ingleton, A.W.: The Hahn–Banach theorem for non-Archimedean-valued fields. Proc. Camb. Philol. Soc. 48, 41–45 (1952)
117. 117.
Ioffe, A.D.: A new proof of the equivalence of the Hahn–Banach extension and the least upper bound properties. Proc. Am. Math. Soc. 82, 385–389 (1981)
118. 118.
Ioffe, A.D.: Nonsmooth analysis: differential calculus of nondifferentiable mappings. Trans. Am. Math. Soc. 266, 1–56 (1981)
119. 119.
Isac, G., Rassias, Th.M.: On the Hyers–Ulam stability of ψ-additive mappings. J. Approx. Theory 72, 131–137 (1993)
120. 120.
Isac, G., Rassias, Th.M.: Functional inequalities for approximately additive mappings. In: Rassias, Th.M., Tabor, J. (eds.) Stability of Mappings of Hyers–Ulam Type, pp. 117–125. Hadronic Press, Palm Harbor (1994) Google Scholar
121. 121.
Isac, G., Rassias, Th.M.: Stability of ψ-additive mappings: applications to non-linear analysis. Int. J. Math. Math. Sci. 19, 219–228 (1996)
122. 122.
Jameson, G.: Ordered Linear Spaces. Lect. Notes Math., vol. 141. Springer, Berlin (1970)
123. 123.
Jun, K.-W., Shin, D.-S., Kim, B.-D.: On Hyers–Ulam–Rassias stability of the Pexider equation. J. Math. Anal. Appl. 239, 20–29 (1999)
124. 124.
Jung, S.-M.: Hyers–Ulam–Rassias stability of functional equations. Dyn. Syst. Appl. 6, 541–565 (1997)
125. 125.
Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
126. 126.
Jung, S.-M.: Survey on the Hyers–Ulam–Rassias stability of functional equations. In: Czerwik, S. (ed.) Stability of Functional Equations of Ulam–Hyers–Rassias Type, pp. 91–117. Hadronic Press, Palm Harbor (2003) Google Scholar
127. 127.
Kaiser, Z., Páles, Zs.: An example of a stable functional equation when the Hyers method does not work. J. Inequal. Pure Appl. Math. 6, 1–11 (2005) Google Scholar
128. 128.
Kaufman, R.: Extension of functionals and inequalities on an Abelian semi-group. Proc. Am. Math. Soc. 17, 83–85 (1966)
129. 129.
Kaufman, R.: Interpolation of additive functionals. Stud. Math. 27, 269–272 (1966)
130. 130.
Kazhdan, D.: On ε-representations. Isr. J. Math. 43, 315–323 (1982)
131. 131.
Kelley, J.L.: Banach spaces with the extension property. Trans. Am. Math. Soc. 72, 323–326 (1952)
132. 132.
Kelley, J.L., Namioka, I.: Linear Topological Spaces. Van Nostrand, New York (1963)
133. 133.
Khodaei, H., Rassias, Th.M.: Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl. 1, 22–41 (2010) Google Scholar
134. 134.
Kim, G.K.: On the stability of functional equations with square-symmetric operations. Math. Inequal. Appl. 4, 257–266 (2001)
135. 135.
Kominek, Z.: On Hyers–Ulam stability of the Pexider equation. Demonstr. Math. 37, 373–376 (2004)
136. 136.
Kotarski, W.: A remark on the Hahn–Banach theorem. Rad. Mat. 3, 105–109 (1987)
137. 137.
Kranz, P.: Additive functionals on abelian semigroups. Ann. Soc. Math. Pol. 16, 239–246 (1972)
138. 138.
Kranz, P.: Extensions of additive functionals and semicharacters on commutative semigroups. Semigroup Forum 18, 293–305 (1979)
139. 139.
Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Polish Sci. Publ. and Univ. Ślaski, Warszawa (1985)
140. 140.
Lambek, J.: Goursat theorem and the Zassenhaus lemma. Can. J. Math. 10, 45–56 (1958)
141. 141.
Larsen, R.: An Introduction to the Theory of Multipliers. Sringer, Berlin (1971)
142. 142.
Lee, Y.-H., Jun, K.-W.: On the stability of approximately additive mappings. Proc. Am. Math. Soc. 128, 1361–1369 (1999)
143. 143.
Lee, S.J., Nashed, M.Z.: Algebraic and topological selections of multi-valued linear relations. Ann. Scuola Norm. Sup. Pisa 17, 111–126 (1990)
144. 144.
Lee, S.J., Nashed, M.Z.: Normed linear relations: domain decomposability, adjoint subspaces, and selections. Linear Algebra Appl. 153, 135–159 (1991)
145. 145.
Lorenzen, P.: Über die Korrespondenzen Einer. Struct. Mat. Zeitshr. 60, 61–65 (1954)
146. 146.
Lu, G., Park, Ch.: Hyers–Ulam stability of additive set-valued functional equations. Appl. Math. Lett. (2011). doi:
147. 147.
MacLane, S.: An algebra of additive relations. Proc. Natl. Acad. Sci. USA 47, 1043–1051 (1961)
148. 148.
MacLane, S.: Homology. Springer, Berlin (1963)
149. 149.
Maligranda, L.: A result of Tosio Aoki about a generalization of Hyers–Ulam stability of additive functions – a question of priority. Aequ. Math. 75, 289–296 (2008)
150. 150.
Mihet, D.: The Hyers–Ulam stability for two functional equation in a single variable. Banach J. Math. Anal. 2, 48–52 (2008)
151. 151.
Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 49, 109–154 (1970)
152. 152.
Moslehian, M.S., Rassias, Th.M.: Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discrete Math. 1, 325–334 (2007)
153. 153.
Moszner, Z.: On the stability of functional equations. Aequ. Math. 77, 33–88 (2009)
154. 154.
Murray, F.J.: Linear transformations in L p (p>1). Trans. Am. Math. Soc. 39, 83–100 (1936) Google Scholar
155. 155.
Nachbin, L.: A theorem of the Hahn–Banach type for linear transformations. Trans. Am. Math. Soc. 68, 28–46 (1950)
156. 156.
Najati, A., Rassias, Th.M.: Stability of homomorphisms and (θ,φ)-derivations. Appl. Anal. Discrete Math. 3, 264–281 (2009)
157. 157.
Najati, A., Rassias, Th.M.: Stability of a mixed functional equation in several variables on Banach modules. Nonlinear Anal. 72, 1755–1767 (2010)
158. 158.
Narici, L.: On the Hahn–Banach theorem. In: Advanced Courses of Mathematical Analysis II, pp. 87–122. World Sci., Hackensack (2007) Google Scholar
159. 159.
Narici, L., Beckenstein, E.: The Hahn–Banach theorem: the life and times. Topol. Appl. 77, 193–211 (1997)
160. 160.
Narici, L., Beckenstein, E.: The Hahn–Banach theorem and the sad life of E. Helly. In: Advanced Courses of Mathematical Analysis III, pp. 97–110. World Sci., Hackensack (2008) Google Scholar
161. 161.
Von Neumann, J.: Über adjungierte Functional-operatoren. Ann. Math. 33, 294–310 (1932) Google Scholar
162. 162.
Von Neumann, J.: Functional Operators: The Geometry of Orthogonal Spaces. Ann. Math. Stud., vol. 22. Princeton University Press, Princeton (1950)
163. 163.
Nikodem, K.: Additive selections of additive set-valued functions. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat. 18, 143–148 (1988)
164. 164.
Nikodem, K.: K-convex and K-concave set-valued functions. Zeszyty Nauk. Politech. Lódz. Mat. 559, 1–75 (1989) Google Scholar
165. 165.
Nikodem, K.: The stability of the Pexider equation. Ann. Math. Sil. 5, 91–93 (1991)
166. 166.
Nikodem, K.: Remarks on additive injective set-valued functions. An. Univ. Oradea, Fasc. Mat. 11, 175–180 (2004)
167. 167.
Nikodem, K., Popa, D.: On single-valuedness of set-valued maps satisfying linear inclusions. Banach J. Math. Anal 3, 44–51 (2009)
168. 168.
Nikodem, K., Popa, D.: On selections of general linear inclusions. Publ. Math. (Debr.) 75, 239–249 (2009)
169. 169.
Nikodem, K., Wasowicz, Sz.: A sandwich theorem and Hyers–Ulam stability of affine functions. Aequ. Math. Sil. 49, 160–164 (1995)
170. 170.
Nikodem, K., Páles, Zs., Wasowicz, Sz.: Abstract separation theorems of Rodé type and their applications. Ann. Pol. Math. 72, 207–217 (1999)
171. 171.
Nikodem, K., Sadowska, E., Wasowicz, Sz.: Note on separation by subadditive and sublinear functions. Ann. Math. Sil. 14, 7–21 (2000)
172. 172.
Paganoni, L.: Soluzione di una equazione funzionale su dominio ristretto. Boll. Unione Mat. Ital. 17-B, 979–993 (1980)
173. 173.
Páles, Zs.: Linear selections for set-valued functions and extension of bilinear forms. Arch. Math. (Basel) 62, 427–432 (1994)
174. 174.
Páles, Zs.: Separation with symmetric bilinear forms and symmetric selections of set-valued functions. Publ. Math. (Debr.) 46, 321–331 (1995)
175. 175.
Páles, Zs.: Separation by semidefinite bilinear forms. Int. Ser. Numer. Math. 123, 259–267 (1997) Google Scholar
176. 176.
Páles, Zs.: Generalized stability of the Cauchy functional equations. Aequ. Math. 56, 222–232 (1998)
177. 177.
Páles, Zs.: Hyers–Ulam stability of the Cauchy functional equation on square-symmetric groupoids. Publ. Math. (Debr.) 58, 651–666 (2001)
178. 178.
Páles, Zs., Székelyhidi, L.: On approximate sandwich and decomposition theorems. Ann. Univ. Sci. Budapest Sect. Comput. 23, 59–70 (2004)
179. 179.
Park, Ch., Rassias, Th.M.: Fixed points and generalized Hyers–Ulam stability of quadratic functional equations. J. Math. Inequal. 1, 515–528 (2007)
180. 180.
Park, Ch., Rassias, Th.M.: Fixed points and stability of the Cauchy functional equation. Aust. J. Math. Anal. Appl. 6, 14 (2009). pp. 1–9
181. 181.
Pataki, G.: On a generalized infimal convolution of set functions. Manuscript Google Scholar
182. 182.
Peng, J., Lee, H.W.J., Rong, W., Yang, X.: A generalization of Hahn–Banach extension theorem. J. Math. Anal. Appl. 302, 441–449 (2005)
183. 183.
Pérez-Garcia, C.: The Hahn–Banach extension property in p-adic analysis. In: P-adic Functional Analysis. Lect. Notes in Pure and Appl. Math., vol. 137, pp. 127–140. Dekker, New York (1992) Google Scholar
184. 184.
Piao, Y.J.: The existence and uniqueness of additive selections for (α,β)–(β,α) type subadditive set-valued maps. J. Northeast Norm. University 41, 33–40 (2009)
185. 185.
Plappert, P.: Sandwich theorem for monotone additive functions. Semigroup Forum 51, 347–355 (1995)
186. 186.
Plewnia, J.: A generalization of the Hahn–Banach theorem. Ann. Pol. Math. 58, 47–51 (1993)
187. 187.
Pólya, Gy., Szegő, G.: Aufgaben und Lehrsätze aus der Analysis I. Springer, Berlin (1925)
188. 188.
Popa, D.: Additive selections of (α,β)-subadditive set valued maps. Glas. Mat. 36, 11–16 (2001)
189. 189.
Popa, D.: Functional inclusions on square-symmetric grupoids and Hyers–Ulam stability. Math. Inequal. Appl. 7, 419–428 (2004)
190. 190.
Popa, D., Vornicescu, N.: Locally compact set-valued solutions for the general linear equation. Aequ. Math. 67, 205–215 (2004)
191. 191.
Przeslawski, K.: Linear and lipschitz continuous selectors for the family of convex sets in Euclidean vector spaces. Bull. Acad. Pol. Sci. Ser. Sci. Math. 33, 31–33 (1985)
192. 192.
Rådström, H.: One-parameter semigroups of subsets of a real linear space. Ark. Mat. 4, 87–97 (1960)
193. 193.
Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91–96 (2003)
194. 194.
Rassias, J.M.: On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 46, 126–130 (1982)
195. 195.
Rassias, J.M.: On approximation of approximately linear mappings by linear mappings. Bull. Sci. Math. 108, 445–446 (1984)
196. 196.
Rassias, J.M.: Solution of a problem of Ulam. J. Approx. Theory 57, 268–273 (1989)
197. 197.
Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 279–300 (1978) Google Scholar
198. 198.
Rassias, Th.M.: On a modified Hyers–Ulam sequence. J. Math. Anal. Appl. 158, 106–113 (1991)
199. 199.
Rassias, Th.M.: On the stability of the quadratic functional equation and its applications. Stud. Univ. Babeş-Bolyai, Math. 43, 89–124 (1998)
200. 200.
Rassias, Th.M.: Stability and set-valued functions. In: Analysis and Topology, pp. 585–614. World Sci., River Edge (1998) Google Scholar
201. 201.
Rassias, Th.M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62, 23–130 (2000)
202. 202.
Rassias, Th.M.: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 246, 352–378 (2000)
203. 203.
Rassias, Th.M.: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251, 264–284 (2000)
204. 204.
Rassias, Th.M.: On the stability of functional equations originated by a problem of Ulam. Mathematica (Cluj) 44, 39–75 (2002) Google Scholar
205. 205.
Rassias, Th.M., Šemrl, P.: On the behavior of mappings which do not satisfy Hyers–Ulam stability. Proc. Am. Math. Soc. 114, 989–993 (1992)
206. 206.
Rassias, Th.M., Šemrl, P.: On the Hyers–Ulam stability of linear mappings. J. Math. Anal. Appl. 173, 325–338 (1993)
207. 207.
Rassias, Th.M., Tabor, J.: What is left of Hyers–Ulam stability? J. Nat. Geom. 1, 65–69 (1992)
208. 208.
Rassias, Th.M., Tabor, J. (eds.): Stability of Mappings of Hyers–Ulam Type. Hadronic Press, Palm Harbor (1994)
209. 209.
Rätz, J.: On approximately additive mappings. In: Beckenbach, E.F. (ed.) General Inequalities 2, Oberwolfach, 1978. Int. Ser. Num. Math., vol. 47, pp. 233–251. Birkhäuser, Basel (1980) Google Scholar
210. 210.
Revenko, A.V.: On the extension of linear functionals. Ukr. Math. Visn. 6, 113–125 (2009) (Russian)
211. 211.
Riesz, F.: Sur les systémes orthogonaux de fonctions. C. R. Acad. Sci. Paris 144, 615–619 (1907)
212. 212.
Riesz, F.: Untersuchungen über Systeme integrierbare Funktionen. Math. Ann. 69, 449–497 (1910)
213. 213.
Robinson, S.M.: Normed convex processes. Trans. Am. Math. Soc. 174, 127–140 (1992) Google Scholar
214. 214.
Rockafellar, R.T.: Monotone processes of convex and concave type. Mem. Amer. Math. Soc. 77 (1967) Google Scholar
215. 215.
Rodríguez-Salinas, B.: Generalización sobre módulos del teorema de Hahn–Banach y sus aplicaciones. Collect. Math. 14, 105–151 (1962)
216. 216.
Rodríguez-Salinas, B.: Algunos problemas y teoremas de extension de aplicaciones lineales. Rev. R. Acad. Cienc. Exactas Fís. Nat. Madr. 65, 677–704 (1971) Google Scholar
217. 217.
Rodríguez-Salinas, B., Bou, L.: A Hahn–Banach theorem for arbitrary vector spaces. Boll. Unione Mat. Ital. 10, 390–393 (1974)
218. 218.
Roth, W.: Hahn–Banach type theorems for locally convex cones. J. Aust. Math. Soc. 68, 104–125 (2000)
219. 219.
Sablik, M.: A functional congruence revisited. Grazer Math. Ber. 316, 181–200 (1992)
220. 220.
Sánchez, F.C., Castillo, J.M.F.: Banach space techniques underpinning a theory for nearly additive mappings. Diss. Math. 404, 1–73 (2002) Google Scholar
221. 221.
Saccoman, J.J.: Extension theorems by Helly and Riesz revisited. Riv. Mat. Univ. Parma 16, 223–230 (1990)
222. 222.
Saccoman, J.J.: On the extension of linear operators. Int. J. Math. Math. Sci. 28, 621–623 (2001). http://ijmms.hindawi.com
223. 223.
Sandovici, A., de Snoo, H., Winkler, H.: Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces. Linear Algebra Appl. 423, 456–497 (2007)
224. 224.
Saveliev, P.: Lomonosov’s invariant subspace theorem for multivalued linear operators. Proc. Am. Math. Soc. 131, 825–834 (2002)
225. 225.
Schwaiger, J.: Remark 12. Aequ. Math. 35, 120–121 (1988) Google Scholar
226. 226.
Simons, S.: Extended and sandwich versions of the Hahn–Banach theorem. J. Math. Anal. Appl. 21, 112–122 (1968)
227. 227.
Simons, S.: From Hahn–Banach to Monotonicity. Springer, Berlin (2008)
228. 228.
Smajdor, A.: Additive selections of superadditive set-valued functions. Aequ. Math. 39, 121–128 (1990)
229. 229.
Smajdor, A.: The stability of the Pexider equation for set-valued functions. Rocz. Nauk.-Dydakt. Pr. Mat. 13, 277–286 (1993)
230. 230.
Smajdor, A., Smajdor, W.: Affine selections of convex set-valued functions. Aequ. Math. 51, 12–20 (1996)
231. 231.
Smajdor, W.: Subadditive set-valued functions. Glas. Mat. 21, 343–348 (1986)
232. 232.
Smajdor, W.: Superadditive set-valued functions and Banach–Steinhaus theorem. Rad. Mat. 3, 203–214 (1987)
233. 233.
Smajdor, W.: Subadditive and subquadratic set-valued functions. Pr. Nauk. Univ. Ślask. Katowic. 889, 1–73 (1987)
234. 234.
Smajdor, W., Szczawińska, J.: A theorem of the Hahn–Banach type. Demonstr. Math. 28, 155–160 (1995)
235. 235.
Soukhomlinov, G.A.: On the extension of linear functionals in complex and quaternion linear spaces. Mat. Sb. 3, 353–358 (1938) Google Scholar
236. 236.
Špakula, J., Zlatoš, P.: Almost homomorphisms of compact groups. Ill. J. Math. 48, 1183–1189 (2004)
237. 237.
Strömberg, T.: The operation of infimal convolution. Diss. Math. 352, 1–58 (1996) Google Scholar
238. 238.
Száz, Á.: Convolution multipliers and distributions. Pac. J. Math. 60, 267–275 (1975)
239. 239.
P185R1: Aequ. Math. 22, 308–309 (1981) Google Scholar
240. 240.
Száz, Á.: Generalized preseminormed spaces of linear manifolds and bounded linear relations. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 14, 49–78 (1984)
241. 241.
Száz, Á.: Projective generation of preseminormed spaces by linear relations. Studia Sci. Math. Hung. 23, 297–313 (1988)
242. 242.
Száz, Á.: Pointwise limits of nets of multilinear maps. Acta Sci. Math. (Szeged) 55, 103–117 (1991)
243. 243.
Száz, Á.: The intersection convolution of relations and the Hahn–Banach type theorems. Ann. Pol. Math. 69, 235–249 (1998)
244. 244.
Száz, Á.: An extension of Banach’s closed graph theorem to linear relations. Leaflets Math. Pécs, 144–145 (1998) Google Scholar
245. 245.
Száz, Á.: Translation relations, the building blocks of compatible relators. Math. Montisnigri 12, 135–156 (2000)
246. 246.
Száz, Á.: Preseminorm generating relations. Publ. Elektroteh. Fak. Univ. Beogr., Mat. 12, 16–34 (2001)
247. 247.
Száz, Á.: Partial multipliers on partially ordered sets. Novi Sad J. Math. 32, 25–45 (2002)
248. 248.
Száz, Á.: Relationships between translation and additive relations. Acta Acad. Paed. Agriensis, Sect. Math. (N.S.) 30, 179–190 (2003)
249. 249.
Száz, Á.: Linear extensions of relations between vector spaces. Comment. Math. Univ. Carol. 44, 367–385 (2003)
250. 250.
Száz, Á.: Lower semicontinuity properties of relations in relator spaces. Tech. Rep., Inst. Math., Univ. Debrecen 4, 1–52 (2006) Google Scholar
251. 251.
Száz, Á.: An extension of an additive selection theorem of Z. Gajda and R. Ger. Tech. Rep., Inst. Math., Univ. Debrecen 8, 1–24 (2006) Google Scholar
252. 252.
Száz, Á.: Applications of fat and dense sets in the theory of additive functions. Tech. Rep., Inst. Math., Univ. Debrecen 3, 1–29 (2007) Google Scholar
253. 253.
Száz, Á.: An instructive treatment of a generalization of Hyers’s stability theorem. In: Rassias, Th.M., Andrica, D. (eds.) Inequalities and Applications, pp. 245–271. Cluj University Press, Romania (2008) Google Scholar
254. 254.
Száz, Á.: Relationships between the intersection convolution and other important operations on relations. Math. Pannon. 20, 99–107 (2009)
255. 255.
Száz, Á.: Applications of relations and relators in the extensions of stability theorems for homogeneous and additive functions. Aust. J. Math. Anal. Appl. 6, 16 (2009), pp. 66
256. 256.
Száz, Á.: A reduction theorem for a generalized infimal convolution. Tech. Rep., Inst. Math., Univ. Debrecen 11, 1–4 (2009) Google Scholar
257. 257.
Száz, Á.: Foundations of the theory of vector relators. Adv. Stud. Contemp. Math. (Kyungshang), 20, 139–195 (2010)
258. 258.
Száz, Á.: The intersection convolution of relations. Creative Math. Inf. 19, 209–217 (2010)
259. 259.
Száz, Á.: The infimal convolution can be used to derive extension theorems from the sandwich ones. Acta Sci. Math. (Szeged) 76, 489–499 (2010)
260. 260.
Száz, Á.: Relation theoretic operations on box and totalization relations. Tech. Rep., Inst. Math., Univ. Debrecen 13, 1–22 (2010) Google Scholar
261. 261.
Száz, Á., Száz, G.: Additive relations. Publ. Math. (Debr.) 20, 172–259 (1973) Google Scholar
262. 262.
Száz, Á., Száz, G.: Linear relations. Publ. Math. (Debr.) 27, 219–227 (1980)
263. 263.
Száz, Á., Száz, G.: Absolutely linear relations. Aequ. Math. 21, 8–15 (1980)
264. 264.
Száz, Á., Száz, G.: Quotient spaces defined by linear relations. Czechoslov. Math. J. 32, 227–232 (1982) Google Scholar
265. 265.
Száz, Á., Száz, G.: Multilinear relations. Publ. Math. (Debr.) 31, 163–164 (1984)
266. 266.
Száz, Á., Túri, J.: Pointwise and global sums and negatives of odd and additive relations. Octogon 11, 114–125 (2003) Google Scholar
267. 267.
Szczawińska, J.: Selections of biadditive set-valued functions. Ann. Math. Sil. 8, 227–240 (1994) Google Scholar
268. 268.
Székelyhidi, L.: Remark 17. Aequ. Math. 29, 95–96 (1985) Google Scholar
269. 269.
Székelyhidi, L.: Note on Hyers’s theorem. C. R. Math. Rep. Acad. Sci. Can. 8, 127–129 (1986)
270. 270.
Székelyhidi, L.: Ulam’s problem, Hyers’s solution—and to where they led. In: Rassias, Th.M. (ed.) Functional Equations and Inequalities. Math. Appl., vol. 518, pp. 259–285. Kluwer Acad., Dordrecht (2000) Google Scholar
271. 271.
Tabor, J.: Remark 18. Aequ. Math. 29, 96 (1985) Google Scholar
272. 272.
Tabor, J. Jr.: Ideally convex sets and hyers theorem. Funkc. Ekvacioj 43, 121–125 (2000)
273. 273.
Tabor, J. Jr.: Hyers theorem and the cocycle property. In: Daróczy, Z., Páles, Zs. (eds.) Funtional Equations—Results and Advances, pp. 275–291. Kluwer, Boston (2002) Google Scholar
274. 274.
Tabor, J., Tabor, J.: Restricted stability and shadowing. Publ. Math. (Debr.) 73, 49–58 (2008)
275. 275.
Tabor, J., Tabor, J.: Stability of the Cauchy functional equation in metric groupoids. Aequ. Math. 76, 92–104 (2008)
276. 276.
Takahasi, S.-E., Miura, T., Takagi, H.: On a Hyers–Ulam–Aoki–Rassias type stability and a fixed point theorem. J. Nonlinear Convex Anal. 11, 423–439 (2010)
277. 277.
Ulam, S.M.: Collection of Mathematical Problems. Interscience, New York (1960)
278. 278.
Ursescu, C.: Multifunctions with convex closed graph. Czechoslov. Math. J. 25, 438–441 (1975)
279. 279.
Volkmann, P.: On the stability of the Cauchy equation. Leaflets Math. Pécs, 150–151 (1998) Google Scholar
280. 280.
Volkmann, P.: Zur Rolle der ideal konvexen Mengen bei der Stabilität der Cauchyschen Funktionalgleichung. Seminar LV 6, 1–6 (1999). http://www.mathematik.uni-karlsruhe.de/~semlv Google Scholar
281. 281.
Volkmann, P.: Instabilität einer zu f(x+y)=f(x)+f(y) äquivalenten Functionalgleichung. Seminar LV 23, 1 (2006). http://www.mathematik.uni-karlsruhe.de/~semlv
282. 282.
Whitehead, W.: Elements of Homotopy Theory. Springer, Berlin (1978)
283. 283.
Zǎlinescu, C.: Hahn–Banach extension theorems for multifunctions. Math. Methods Oper. Res. 68, 493–508 (2008)