Feeding as a Reward Mechanism

  • Ralph J. DiLeone
  • Nandakumar S. Narayanan
  • Douglas J. Guarnieri


Rates of obesity are increasing worldwide and pose a significant threat to individual health and to health-care systems. The natural drive to eat, combined with a surplus of readily available food, is together partly responsible for this modern epidemic. Recent research has better defined the molecular and neural mechanisms by which the brain regulates food intake. While much of this research focused on the hypothalamus, it has long been recognized that reward pathways have an important role in food intake. Here, an overview of the role of dopamine reward systems in regulating food intake is presented, with emphasis on regulation by peripheral metabolic signals. Moreover, there are emerging results that better connect regulation of sleep and reward circuits. The orexin (hypocretin) neuropeptide is an example of this and work on its role in addiction is also highlighted in this chapter.


Ventral Tegmental Area Conditioned Place Preference Dopamine Neuron Lateral Hypothalamus Morphine Withdrawal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci. 2005;8:555–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Margules DL, Olds J. Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats. Science. 1962;135:374–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Delgado JM, Anand BK. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol. 1953;172:162–8.PubMedGoogle Scholar
  5. 5.
    Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41:317–8.PubMedGoogle Scholar
  6. 6.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Baldo BA, Gual-Bonila L, Sijapati K, et al. Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment. Eur J Neurosci. 2004;19:376–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Zigmond MJ, Stricker EM. Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science. 1972;177:1211–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. 1971;367:1–48.Google Scholar
  11. 11.
    Zigmond MJ, Stricker EM. Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions. Science. 1973;182:717–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Phillips AG, Nikaido RS. Disruption of brain stimulation-induced feeding by dopamine receptor blockade. Nature. 1975;258:750–1.PubMedCrossRefGoogle Scholar
  13. 13.
    Price MT, Fibiger HC. Discriminated escape learning and response to electric shock after 6-hydroxydopamine lesions of the nigro-neostriatal dopaminergic projection. Pharmacol Biochem Behav. 1975;3:285–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Wise RA, Colle LM. Pimozide attenuates free feeding: best scores analysis reveals a motivational deficit. Psychopharmacology (Berl). 1984;84:446–51.CrossRefGoogle Scholar
  15. 15.
    Wise RA. Catecholamine theories of reward: a critical review. Brain Res. 1978;152:215–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Wise RA, Spindler J, deWit H, et al. Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science. 1978;201:262–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Wise RA, Spindler J, Legault L. Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Can J Psychol. 1978;32:77–85.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou QY, Palmiter RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995;83:1197–209.PubMedCrossRefGoogle Scholar
  19. 19.
    Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007;30:375–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Cannon CM, Palmiter RD. Reward without dopamine. J Neurosci. 2003;23:10827–31.PubMedGoogle Scholar
  21. 21.
    Galey D, Simon H, Le Moal M. Behavioral effects of lesions in the A10 dopaminergic area of the rat. Brain Res. 1977;124:83–97.PubMedCrossRefGoogle Scholar
  22. 22.
    MacDonald AF, Billington CJ, Levine AS. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens. Brain Res. 2004;1018:78–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Hommel JD, Trinko, R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006;51:801–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Naleid AM, et al. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Hernandez L, Hoebel BG. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav. 1988;44:599–606.PubMedCrossRefGoogle Scholar
  26. 26.
    Bassareo V, Di Chiara G. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience. 1999;89:637–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Roitman MF, Stuber GD, Phillips PE, et al. Dopamine operates as a subsecond modulator of food seeking. J Neurosci. 2004;24:1265–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol. 1997;7:191–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Schultz W. Reward signaling by dopamine neurons. Neuroscientist. 2001;7:293–302.PubMedCrossRefGoogle Scholar
  30. 30.
    Schultz W. Behavioral dopamine signals. Trends Neurosci. 2007;30:203–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Hyland BI, Reynolds JNJ, Hay J, et al. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience. 2002;114:475–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and ­conditioned stimuli during successive steps of learning a delayed response task. J Neurosci. 1993;13: 900–13.PubMedGoogle Scholar
  33. 33.
    Baldo BA, Sadeghian K, Basso AM, et al. Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res. 2002;137:165–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Szczypka MS, Kwok K, Brot MD, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron. 2001;30: 819–28.PubMedCrossRefGoogle Scholar
  35. 35.
    Hnasko TS, Perez FA, Scouras AD, et al. Cre ­recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses ­hypophagia and bradykinesia. Proc Natl Acad Sci USA. 2006;103:8858–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Nowend KL, Arizzi M, Carlson BB, et al. D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav. 2001;69:373–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Salamone JD, Correa M, Mingote S, et al. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther. 2003;305:1–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Wyvell CL, Berridge KC. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci. 2000;20:8122–30.PubMedGoogle Scholar
  39. 39.
    Nicola SM, Taha SA, Kim SW, et al. Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience. 2005;135:1025–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Salamone JD, Correa M, MIngote SM, et al. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol. 2005;5:34–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci. 2006;361:1149–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor OB-R. Cell. 1995;83:1263–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Fulton S, Woodside B, Shizgal P. Modulation of brain reward circuitry by leptin. Science. 2000;287:125–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Shalev U, Yap J, Shaham Y. Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J Neurosci. 2001;21:RC129.PubMedGoogle Scholar
  48. 48.
    Figlewicz DP, Bennet J, Evans SB, et al. Intraventricular insulin and leptin reverse place preference conditioned with high-fat diet in rats. Behav Neurosci. 2004;118:479–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Figlewicz DP, HIggins MS, Ng-Evans SB, et al. Leptin reverses sucrose-conditioned place preference in ­food-restricted rats. Physiol Behav. 2001;73:229–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Figlewicz DP, Woods SC. Adiposity signals and brain reward mechanisms. Trends Pharmacol Sci. 2000;21:235–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Elmquist JK, Bjorbaek C, Ahima RS, et al. Distribution of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998;535–47.PubMedCrossRefGoogle Scholar
  52. 52.
    Grill HJ, Schwartz MW, Kaplan JM, et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology. 2002; 143:239–46.PubMedCrossRefGoogle Scholar
  53. 53.
    Figlewicz DP, Evans SB, Murphy J, et al. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003;964:107–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Fulton S, Pissios P, Manchon RP, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron. 2006;51:811–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304:108–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Pinto S, Roseberry AG, Liu H, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Krugel U, Schraft T, Kittner H, et al. Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol. 2003;482:185–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Farooqi IS, Bullmore E, Keogh J, et al. Leptin regulates striatal regions and human eating behavior. Science. 2007;317:1355.PubMedCrossRefGoogle Scholar
  59. 59.
    Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.PubMedCrossRefGoogle Scholar
  60. 60.
    Lammel S, Hetzel A, Hackel O, et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron. 2008;57: 760–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Figlewicz DP, Szot P, Chavez M, et al. Intraventricular insulin increases dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res. 1994;644:331–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8:1445–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang M, Gosnell BA, Kelley AE. Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther. 1998;285:908–14.PubMedGoogle Scholar
  65. 65.
    Stratford TR, Kelley AE, Simansky KJ. Blockade of GABAA receptors in the medial ventral pallidum elicits feeding in satiated rats. Brain Res. 1999;825:199–203.PubMedCrossRefGoogle Scholar
  66. 66.
    Kelley AE, Swanson CJ. Feeding induced by blockade of AMPA and kainate receptors within the ventral striatum: a microinfusion mapping study. Behav Brain Res. 1997;89:107–13.PubMedCrossRefGoogle Scholar
  67. 67.
    Pecina S, Cagniard B, Berridge KC, et al. Hyper­dopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci. 2003;23:9395–402.PubMedGoogle Scholar
  68. 68.
    Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001;96:103–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang M, Balmadrid C, Kelley AE. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat. Behav Neurosci. 2003;117:202–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Pecina S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci. 2005;25:11777–86.PubMedCrossRefGoogle Scholar
  71. 71.
    Kelley AE, Baldo BA, Pratt WE, et al. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86:773–95.PubMedCrossRefGoogle Scholar
  72. 72.
    Taha SA, Fields HL. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci. 2005;25:1193–202.PubMedCrossRefGoogle Scholar
  73. 73.
    Taha SA, Fields HL. Inhibitions of nucleus accumbens neurons encode a gating signal for reward-directed behavior. J Neurosci. 2006;26:217–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Clegg DJ, Air AL, Woods SC, et al. Eating elicited by orexin-A, but not melanin-concentrating hormone, is opioid mediated. Endocrinology. 2002;143: 2995–3000.PubMedCrossRefGoogle Scholar
  75. 75.
    Sears RM, Liu RJ, Narayanan NS, et al. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci. 2010;30:8263–73.PubMedCrossRefGoogle Scholar
  76. 76.
    de Lecea L, Kilduff, TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95:322–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Date Y, Ueta Y, Yamashita Y, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine, and neuroregulatory systems. Proc Natl Acad Sci USA. 1999;96:748–53.PubMedGoogle Scholar
  78. 78.
    Broberger C, de Lecea L, Sutcliffe JG, et al. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402:460–74.PubMedCrossRefGoogle Scholar
  79. 79.
    van den Pol AN, Gao XB, Obrietan K, et al. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci. 1998;18:7962–71.PubMedGoogle Scholar
  80. 80.
    Baldo BA, Daniel RA, Berridge CW, et al. Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol. 2003;464:220–37.PubMedCrossRefGoogle Scholar
  81. 81.
    Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111:379–87.PubMedCrossRefGoogle Scholar
  82. 82.
    Nakamura T, Uramur K, Nambu T, et al. Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system. Brain Res. 2000;873:181–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Balcita-Pedicino JJ, Sesack SR. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol. 2007;503:668–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Estabrooke IV, McCarthy MT, Ko E, et al. Fos expression in orexin neurons varies with behavioral state. J Neurosci. 2001;21:1656–62.PubMedGoogle Scholar
  85. 85.
    Zhang GC, Mao LM, Liu XY, et al. Long-lasting ­up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration. J Neurochem. 2007;103:400–7.PubMedGoogle Scholar
  86. 86.
    Zhou Y, Cui CL, Schlussman SD, et al. Effects of cocaine place conditioning, chronic escalating-dose “binge” pattern cocaine administration and acute withdrawal on orexin/hypocretin and preprodynorphin gene expressions in lateral hypothalamus of Fischer and Sprague-Dawley rats. Neuroscience. 2008;153:1225–34.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhou Y, Bendor J, Hofmann L, et al. Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J Endocrinol. 2006;191:137–45.PubMedCrossRefGoogle Scholar
  88. 88.
    Morshedi MM, Meredith GE. Repeated amphetamine administration induces Fos in prefrontal cortical neurons that project to the lateral hypothalamus but not the nucleus accumbens or basolateral amygdala. Psychopharmacology. 2008;197:179–89.PubMedCrossRefGoogle Scholar
  89. 89.
    Georgescu D, Zachariou V, Barrot M, et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J Neurosci. 2003;23:3106–11.PubMedGoogle Scholar
  90. 90.
    Sharf R, Sarhan M, DiLeone RJ. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry. 2008;64:175–83.PubMedCrossRefGoogle Scholar
  91. 91.
    Korotkova TM, Sergeeva OA, Eriksson KS, et al. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci. 2003;23:7–11.PubMedGoogle Scholar
  92. 92.
    Vittoz N, Schmeichel B, Berridge C. Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur J Neurosci. 2008;28:1629–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Vittoz NM, Berridge CW. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology. 2006;31:384–95.PubMedCrossRefGoogle Scholar
  94. 94.
    Narita M, Nagumo Y, Hashimoto S, et al. Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci. 2006;26:398–495.PubMedCrossRefGoogle Scholar
  95. 95.
    Borgland SL, Taha SA, Sarti F, et al. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49:589–601.PubMedCrossRefGoogle Scholar
  96. 96.
    Xia J, Chen X, Song C, et al. Postsynaptic excitation of prefrontal ­cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res. 2005;82:729–36.PubMedCrossRefGoogle Scholar
  97. 97.
    Martin G, Febre V, Siggins GR, et al. Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. Regul Pept. 2002;104:111–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Mukai K, Kim J, Nakajima K, et al. Electro­physiological effects of orexin/hypocretin on nucleus accumbens shell neurons in rats: an in vitro study. Peptides. 2009;30:1487–96.PubMedCrossRefGoogle Scholar
  99. 99.
    Robinson TE, Becker JB, Priesty SK. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 1982;253:231–41.PubMedCrossRefGoogle Scholar
  100. 100.
    Sharf R, Guarnieri DJ, Taylor JR, et al. Orexin mediates morphine place preference, but not morphine-induced hyperactivity or sensitization. Brain Res. 2010;1317:24–32.PubMedCrossRefGoogle Scholar
  101. 101.
    Bardo MT, Valone JM, Bevins RA. Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology (Berl). 1999;143:39–46.CrossRefGoogle Scholar
  102. 102.
    Deroche V, Le Moal M, Piazza PV. Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci. 1999;11:2731–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437:556–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Harris GC, Wimmer M, Randall-Thompson JF, et al. Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav Brain Res. 2007;183: 43–51.PubMedCrossRefGoogle Scholar
  105. 105.
    Hollander JA, Lu Q, Cameron MD, et al. Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci USA. 2008;105:19480–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Lawrence AJ, Cowen MS, Yang HJ, et al. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol. 2006;148:752–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Boutrel B, Kenny PJ, Specio SE, et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA. 2005;102:19168–73.PubMedCrossRefGoogle Scholar
  108. 108.
    Aston-Jones G, Smith RJ, Moorman DE, et al. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology. 2009;56:112–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Wang B, You ZB, Wise RA. Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: independence from the local corticotropin-releasing factor network. Biol Psychiatry. 2009;65:857–62.PubMedCrossRefGoogle Scholar
  110. 110.
    Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci. 2006;29:571–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–27.PubMedCrossRefGoogle Scholar
  112. 112.
    Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98: 365–76.PubMedCrossRefGoogle Scholar
  113. 113.
    Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.PubMedCrossRefGoogle Scholar
  114. 114.
    Zheng H, Patterson LM, Berthoud HR. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol. 2005;485:127–42.PubMedCrossRefGoogle Scholar
  115. 115.
    Sharf R, Sarhan M, Brayton CE, et al. Orexin signaling via the orexin 1 receptor mediates operant responding for food reinforcement. Biol Psychiatry. 2010;67:753–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ralph J. DiLeone
    • 1
  • Nandakumar S. Narayanan
    • 2
  • Douglas J. Guarnieri
    • 3
  1. 1.Department of Psychiatry and NeurobiologyYale School of MedicineNew HavenUSA
  2. 2.Department of NeurobiologyYale Medical SchoolNew HavenUSA
  3. 3.Department of PsychiatryYale UniversityNew HavenUSA

Personalised recommendations