Pharmacological Treatment of Obesity

  • Dhiraj G. Kabra
  • Uma D. Kabra
  • Matthias H. Tschöp
  • Susanna Hofmann
Chapter

Abstract

Obesity is a chronic disease resulting in major morbidity and premature death globally. Current pharmacological treatments are not fully acceptable because of their poor safety and efficacy. Obesity is also associated with other serious complications such as diabetes mellitus, hypertension, hyperlipidemia, hypercholesterolemia, cardiovascular disease etc. Because of its complex nature there is a need for safe and efficacious long-term pharmacological treatment. One treatment approach is not sufficient to manage complex pathological circuitry of obesity. Recently, several novel targets have been proposed that control energy homeostasis and prevent obesity. Although, newer drugs are years away from clinical use, the hope for research investments made to date is translation into safe and effective pharmacological treatment in the future. The goal of this chapter is to describe the latest strategies of pharmacological treatment that are under development, which may finally be used in future.

Keywords

Placebo Lipase Migraine Pancreatitis Caffeine 

References

  1. 1.
    Prevention and management of the global epidemic of obesity: report of the WHO consultation on ­obesity 1997, 3–5 June; Geneva, Switzerland.Google Scholar
  2. 2.
    Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003–2006. JAMA. 2008;299(20):2401–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.PubMedCrossRefGoogle Scholar
  4. 4.
    Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.PubMedGoogle Scholar
  5. 5.
    Bouchard C. Current understanding of the etiology of obesity: genetic and nongenetic factors. Am J Clin Nutr. 1991;53(6):1561S–5S.PubMedGoogle Scholar
  6. 6.
    Goran MI, Weinsier RL. Role of environmental vs. metabolic factors in the etiology of obesity: time to focus on the environment. Obes Res. 2000;8(5):407–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Weinsier RL, Hunter GR, Heini AF, et al. The etiology of obesity: relative contribution of metabolic factors, diet, and physical activity. Am J Med. 1998;105(2):145–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Guidelines for the approval and use of drugs to treat obesity. A position paper of The North American Association for the Study of Obesity. Obes Res 1995;3(5):473–8.Google Scholar
  9. 9.
    Atkinson RL. Use of drugs in the treatment of obesity. Annu Rev Nutr. 1997;17:383–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Bray GA, DeLany J. Opinions of obesity experts on the causes and treatment of obesity–a new survey. Obes Res. 1995;3 Suppl 4:419S–23S.PubMedGoogle Scholar
  11. 11.
    Bray GA, Ryan DH. Drug treatment of the overweight patient. Gastroenterology. 2007;132(6):2239–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Finer N. Present and future pharmacological approaches. Br Med Bull. 1997;53(2):409–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Bray GA. Evaluation of drugs for treating obesity. Obes Res. 1995;3 Suppl 4:425S–34S.PubMedGoogle Scholar
  14. 14.
    Guy-Grand B. Pharmacological approaches to intervention. Int J Obes Relat Metab Disord. 1997;21 Suppl 1:S22–4.PubMedGoogle Scholar
  15. 15.
    Henry JP. A case of myxoedema cured by thyroid extract. Br Med J. 1893;1(1684):737–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Rivlin RS. Therapy of obesity with hormones. N Engl J Med. 1975;292(1):26–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Bhasin S, Wallace W, Lawrence JB, Lesch M. Sudden death associated with thyroid hormone abuse. Am J Med. 1981;71(5):887–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Mittleman RE, Goldberg RB, Nadji M. Severe thyroid atrophy due to prolonged ingestion of thyroid hormone for treatment of obesity. South Med J. 1984;77(2):268–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Boardman WW. Rapidly developing cataracts after dinitrophenol. Cal West Med. 1935;43(2):118–9.PubMedGoogle Scholar
  20. 20.
    Cutting WC, Rytand DA, Tainter ML. Relationship between blood cholesterol and increased metabolism from dinitrophenol and thyroid. J Clin Invest. 1934;13(4):547–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Koch RA, Lee RC, Tainter ML. Dinitrophenol on liver function. Cal West Med. 1935;43(5):337–9.PubMedGoogle Scholar
  22. 22.
    Lesses MF, Myerson A. Human autonomic pharmacology. XVI. Benzedrine sulfate as an aid in the treatment of obesity. 1938. Obes Res. 1994;2(3):286–92.PubMedGoogle Scholar
  23. 23.
    Mayer J. Genetic, traumatic and environmental factors in the etiology of obesity. Physiol Rev. 1953;33(4):472–508.PubMedGoogle Scholar
  24. 24.
    Jelliffe RW, Hill D, Tatter D, Lewis Jr E. Death from weight-control pills. A case report with objective postmortem confirmation. JAMA. 1969;208(10):1843–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaplan NM, Jose A. Thyroid as an adjuvant to amphetamine therapy of obesity. A controlled double-blind study. Am J Med Sci. 1970;260(2):105–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Kattus Jr AA, Biscoe BW, Dashe AM, Davis JH. Spurious heart disease induced by digitalis-containing reducing pills. Arch Intern Med. 1968;122(4):298–304.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith HJ, Roche AH, Jausch MF, Herdson PB. Cardiomyopathy associated with amphetamine administration. Am Heart J. 1976;91(6):792–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Follath F, Burkart F, Schweizer W. Drug-induced pulmonary hypertension? Br Med J. 1971;1(5743):265–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Soong YS. The treatment of exogenous obesity employing auricular acupuncture. Am J Chin Med (Gard City N Y). 1975;3(3):285–7.CrossRefGoogle Scholar
  30. 30.
    Van Itallie TB, Yang MU. Cardiac dysfunction in obese dieters: a potentially lethal complication of rapid, massive weight loss. Am J Clin Nutr. 1984;39(5):695–702.PubMedGoogle Scholar
  31. 31.
    Silverstone T. Appetite suppressants. A review. Drugs. 1992;43(6):820–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Weintraub M. Long-term weight control study: conclusions. Clin Pharmacol Ther. 1992;51(5):642–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Connolly HM, Crary JL, McGoon MD, et al. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med. 1997;337(9):581–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Kernan WN, Viscoli CM, Brass LM, et al. Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med. 2000;343(25):1826–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Astrup A, Breum L, Toubro S. Pharmacological and clinical studies of ephedrine and other thermogenic agonists. Obes Res. 1995;3 Suppl 4:537S–40S.PubMedGoogle Scholar
  36. 36.
    Haller CA, Benowitz NL. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N Engl J Med. 2000;343(25):1833–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Daly PA, Krieger DR, Dulloo AG, et al. Ephedrine, caffeine and aspirin: safety and efficacy for treatment of human obesity. Int J Obes Relat Metab Disord. 1993;17 Suppl 1:S73–8.PubMedGoogle Scholar
  38. 38.
    Hallas J, Bjerrum L, Stovring H, Andersen M. Use of a prescribed ephedrine/caffeine combination and the risk of serious cardiovascular events: a registry-based case-crossover study. Am J Epidemiol. 2008;168(8):966–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Hadvary P, Lengsfeld H, Wolfer H. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J. 1988;256(2):357–61.PubMedGoogle Scholar
  40. 40.
    Guerciolini R. Mode of action of orlistat. Int J Obes Relat Metab Disord. 1997;21 Suppl 3:S12–23.PubMedGoogle Scholar
  41. 41.
    Zhi J, Melia AT, Guerciolini R, et al. Retrospective population-based analysis of the dose-response (fecal fat excretion) relationship of orlistat in normal and obese volunteers. Clin Pharmacol Ther. 1994;56(1):82–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Drent ML, van der Veen EA. Lipase inhibition: a novel concept in the treatment of obesity. Int J Obes Relat Metab Disord. 1993;17(4):241–4.PubMedGoogle Scholar
  43. 43.
    Davidson MH, Hauptman J, DiGirolamo M, et al. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial. JAMA. 1999;281(3):235–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Drent ML, Larsson I, William-Olsson T, et al. Orlistat (Ro 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obes Relat Metab Disord. 1995;19(4):221–6.PubMedGoogle Scholar
  45. 45.
    Cavaliere H, Floriano I, Medeiros-Neto G. Gastrointestinal side effects of orlistat may be prevented by concomitant prescription of natural fibers (psyllium mucilloid). Int J Obes Relat Metab Disord. 2001;25(7):1095–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Halpern A, Mancini MC, Suplicy H, et al. Latin-American trial of orlistat for weight loss and improvement in glycaemic profile in obese diabetic patients. Diabetes Obes Metab. 2003;5(3):180–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhi J, Melia AT, Eggers H, et al. Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J Clin Pharmacol. 1995;35(11):1103–8.PubMedGoogle Scholar
  48. 48.
    McDuffie JR, Calis KA, Booth SL, et al. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy. 2002;22(7):814–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Colman E, Fossler M. Reduction in blood cyclosporine concentrations by orlistat. N Engl J Med. 2000;342(15):1141–2.PubMedCrossRefGoogle Scholar
  50. 50.
    Filippatos TD, Derdemezis CS, Gazi IF, et al. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf. 2008;31(1):53–65.PubMedCrossRefGoogle Scholar
  51. 51.
    MacWalter RS, Fraser HW, Armstrong KM. Orlistat enhances warfarin effect. Ann Pharmacother. 2003;37(4):510–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Ahmed MH. Orlistat and calcium oxalate crystalluria: an association that needs consideration. Ren Fail. 2010;32(8):1019–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwartz SM, Bansal VP, Hale C, et al. Compliance, behavior change, and weight loss with orlistat in an over-the-counter setting. Obesity (Silver Spring). 2008;16(3):623–9.CrossRefGoogle Scholar
  54. 54.
    King DJ, Devaney N. Clinical pharmacology of sibutramine hydrochloride (BTS 54524), a new antidepressant, in healthy volunteers. Br J Clin Pharmacol. 1988;26(5):607–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Stock MJ. Sibutramine: a review of the pharmacology of a novel anti-obesity agent. Int J Obes Relat Metab Disord. 1997;21 Suppl 1:S25–9.PubMedGoogle Scholar
  56. 56.
    Bach DS, Rissanen AM, Mendel CM, et al. Absence of cardiac valve dysfunction in obese patients treated with sibutramine. Obes Res. 1999;7(4):363–9.PubMedGoogle Scholar
  57. 57.
    Bae SK, Cao S, Seo KA, et al. Cytochrome P450 2B6 catalyzes the formation of pharmacologically active sibutramine (N-{1-[1-(4-chlorophenyl)cyclobutyl]-3-methylbutyl}-N, N-dimethylamine) metabolites in human liver microsomes. Drug Metab Dispos. 2008;36(8):1679–88.PubMedCrossRefGoogle Scholar
  58. 58.
    Bray GA, Ryan DH, Gordon D, et al. A double-blind randomized placebo-controlled trial of sibutramine. Obes Res. 1996;4(3):263–70.PubMedGoogle Scholar
  59. 59.
    Apfelbaum M, Vague P, Ziegler O, et al. Long-term maintenance of weight loss after a very-low-calorie diet: a randomized blinded trial of the efficacy and tolerability of sibutramine. Am J Med. 1999;106(2):179–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Dujovne CA, Zavoral JH, Rowe E, Mendel CM. Effects of sibutramine on body weight and serum lipids: a double-blind, randomized, placebo-­controlled study in 322 overweight and obese patients with dyslipidemia. Am Heart J. 2001;142(3):489–97.PubMedCrossRefGoogle Scholar
  61. 61.
    Hazenberg BP. Randomized, double-blind, placebo-controlled, multicenter study of sibutramine in obese hypertensive patients. Cardiology. 2000;94(3):152–8.PubMedCrossRefGoogle Scholar
  62. 62.
    McMahon FG, Fujioka K, Singh BN, et al. Efficacy and safety of sibutramine in obese white and African American patients with hypertension: a 1-year, double-blind, placebo-controlled, multicenter trial. Arch Intern Med. 2000;160(14):2185–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Smith IG, Goulder MA. Randomized placebo-controlled trial of long-term treatment with sibutramine in mild to moderate obesity. J Fam Pract. 2001;50(6):505–12.PubMedGoogle Scholar
  64. 64.
    Florentin M, Liberopoulos EN, Elisaf MS. Sibutramine-associated adverse effects: a practical guide for its safe use. Obes Rev. 2008;9(4):378–87.PubMedCrossRefGoogle Scholar
  65. 65.
    Ioannides-Demos LL, Proietto J, McNeil JJ. Pharmacotherapy for obesity. Drugs. 2005;65(10):1391–418.PubMedCrossRefGoogle Scholar
  66. 66.
    Anderson JW, Greenway FL, Fujioka K, et al. Bupropion SR enhances weight loss: a 48-week double-blind, placebo- controlled trial. Obes Res. 2002;10(7):633–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Li Z, Maglione M, Tu W, et al. Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med. 2005;142(7):532–46.PubMedGoogle Scholar
  68. 68.
    Fuller RW, Wong DT. Serotonin uptake and serotonin uptake inhibition. Ann N Y Acad Sci. 1990;600:68–78. discussion 9–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Koe BK, Weissman A, Welch WM, Browne RG. Sertraline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. J Pharmacol Exp Ther. 1983;226(3):686–700.PubMedGoogle Scholar
  70. 70.
    Goldstein DJ, Rampey Jr AH, Roback PJ, et al. Efficacy and safety of long-term fluoxetine treatment of obesity–maximizing success. Obes Res. 1995;3 Suppl 4:481S–90S.PubMedGoogle Scholar
  71. 71.
    Wise SD. Clinical studies with fluoxetine in obesity. Am J Clin Nutr. 1992;55(1 Suppl):181S–4S.PubMedGoogle Scholar
  72. 72.
    Wadden TA, Bartlett SJ, Foster GD, et al. Sertraline and relapse prevention training following treatment by very-low-calorie diet: a controlled clinical trial. Obes Res. 1995;3(6):549–57.PubMedGoogle Scholar
  73. 73.
    Darga LL, Carroll-Michals L, Botsford SJ, Lucas CP. Fluoxetine’s effect on weight loss in obese subjects. Am J Clin Nutr. 1991;54(2):321–5.PubMedGoogle Scholar
  74. 74.
    Bray GA, Hollander P, Klein S, et al. A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes Res. 2003;11(6):722–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Wilensky AJ, Friel PN, Ojemann LM, et al. Zonisamide in epilepsy: a pilot study. Epilepsia. 1985;26(3):212–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Gadde KM, Franciscy DM, Wagner 2nd HR, Krishnan KR. Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA. 2003;289(14):1820–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Gadde KM, Yonish GM, Foust MS, Wagner HR. Combination therapy of zonisamide and bupropion for weight reduction in obese women: a preliminary, randomized, open-label study. J Clin Psychiatry. 2007;68(8):1226–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Munro JF, MacCuish AC, Marshall A, et al. Weight-reducing effect of diguanides in obese non-diabetic women. Br Med J. 1969;2(5648):13–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Fendri S, Debussche X, Puy H, et al. Metformin effects on peripheral sensitivity to insulin in non diabetic obese subjects. Diabete Metab. 1993;19(2):245–9.PubMedGoogle Scholar
  80. 80.
    Baysal B, Batukan M, Batukan C. Biochemical and body weight changes with metformin in polycystic ovary syndrome. Clin Exp Obstet Gynecol. 2001;28(4):212–4.PubMedGoogle Scholar
  81. 81.
    Atabek ME, Pirgon O. Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab. 2008;21(4):339–48.PubMedCrossRefGoogle Scholar
  82. 82.
    Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001;107(4):E55.PubMedCrossRefGoogle Scholar
  83. 83.
    Love-Osborne K, Sheeder J, Zeitler P. Addition of metformin to a lifestyle modification program in adolescents with insulin resistance. J Pediatr. 2008;152(6):817–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Lee A, Morley JE. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res. 1998;6(1):47–53.PubMedGoogle Scholar
  85. 85.
    Blankson H, Stakkestad JA, Fagertun H, et al. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. 2000;130(12):2943–8.PubMedGoogle Scholar
  86. 86.
    Gaullier JM, Halse J, Hoye K, et al. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr. 2004;79(6):1118–25.PubMedGoogle Scholar
  87. 87.
    Larsen TM, Toubro S, Gudmundsen O, Astrup A. Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr. 2006;83(3):606–12.PubMedGoogle Scholar
  88. 88.
    Gaullier JM, Halse J, Hoye K, et al. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr. 2005;135(4):778–84.PubMedGoogle Scholar
  89. 89.
    Kafetzopoulos D, Martinou A, Bouriotis V. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci USA. 1993;90(7):2564–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Pittler MH, Abbot NC, Harkness EF, Ernst E. Randomized, double-blind trial of chitosan for body weight reduction. Eur J Clin Nutr. 1999;53(5):379–81.PubMedCrossRefGoogle Scholar
  91. 91.
    Mhurchu CN, Poppitt SD, McGill AT, et al. The effect of the dietary supplement, Chitosan, on body weight: a randomised controlled trial in 250 overweight and obese adults. Int J Obes Relat Metab Disord. 2004;28(9):1149–56.PubMedCrossRefGoogle Scholar
  92. 92.
    Zahorska-Markiewicz B, Krotkiewski M, Olszanecka-Glinianowicz M, Zurakowski A. Effect of chitosan in complex management of obesity. Pol Merkur Lekarski. 2002;13(74):129–32.PubMedGoogle Scholar
  93. 93.
    Kaats GR, Michalek JE, Preuss HG. Evaluating efficacy of a chitosan product using a double-blinded, placebo-controlled protocol. J Am Coll Nutr. 2006;25(5):389–94.PubMedGoogle Scholar
  94. 94.
    Pittler MH, Schmidt K, Ernst E. Adverse events of herbal food supplements for body weight reduction: systematic review. Obes Rev. 2005;6(2):93–111.PubMedCrossRefGoogle Scholar
  95. 95.
    Andersen T, Fogh J. Weight loss and delayed gastric emptying following a South American herbal preparation in overweight patients. J Hum Nutr Diet. 2001;14(3):243–50.PubMedCrossRefGoogle Scholar
  96. 96.
    Pittler MH, Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med. 2001;110(9):724–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang J, Kang MJ, Kim MJ, et al. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo. Nutr Res Pract. 2008;2(4):200–3.PubMedCrossRefGoogle Scholar
  98. 98.
    Heymsfield SB, Allison DB, Vasselli JR, et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA. 1998;280(18):1596–600.PubMedCrossRefGoogle Scholar
  99. 99.
    Preuss HG, Bagchi D, Bagchi M, et al. Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes Metab. 2004;6(3):171–80.PubMedCrossRefGoogle Scholar
  100. 100.
    Vasques CA, Rossetto S, Halmenschlager G, et al. Evaluation of the pharmacotherapeutic efficacy of Garcinia cambogia plus Amorphophallus konjac for the treatment of obesity. Phytother Res. 2008;22(9):1135–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Keithley J, Swanson B. Glucomannan and obesity: a critical review. Altern Ther Health Med. 2005;11(6):30–4.PubMedGoogle Scholar
  102. 102.
    Anderson RA. Effects of chromium on body composition and weight loss. Nutr Rev. 1998;56(9):266–70.PubMedCrossRefGoogle Scholar
  103. 103.
    Yazaki Y, Faridi Z, Ma Y, et al. A pilot study of chromium picolinate for weight loss. J Altern Complement Med. 2010;16(3):291–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Kao YH, Chang HH, Lee MJ, Chen CL. Tea, obesity, and diabetes. Mol Nutr Food Res. 2006;50(2):188–210.PubMedCrossRefGoogle Scholar
  105. 105.
    Boschmann M, Thielecke F. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr. 2007;26(4):389S–95S.PubMedGoogle Scholar
  106. 106.
    Takabayashi F, Tahara S, Kaneko T, Harada N. Effect of green tea catechins on oxidative DNA damage of hamster pancreas and liver induced by N-Nitrosobis(2-oxopropyl)amine and/or oxidized soybean oil. Biofactors. 2004;21(1–4):335–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Kalman D, Colker CM, Wilets I, et al. The effects of pyruvate supplementation on body composition in overweight individuals. Nutrition. 1999;15(5):337–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Stanko RT, Tietze DL, Arch JE. Body composition, energy utilization, and nitrogen metabolism with a 4.25-MJ/d low-energy diet supplemented with pyruvate. Am J Clin Nutr. 1992;56(4):630–5.PubMedGoogle Scholar
  109. 109.
    Kopelman P, Bryson A, Hickling R, et al. Cetilistat (ATL-962), a novel lipase inhibitor: a 12-week randomized, placebo-controlled study of weight reduction in obese patients. Int J Obes (Lond). 2007;31(3):494–9.CrossRefGoogle Scholar
  110. 110.
    Bryson A, de la Motte S, Dunk C. Reduction of dietary fat absorption by the novel gastrointestinal lipase inhibitor cetilistat in healthy volunteers. Br J Clin Pharmacol. 2009;67(3):309–15.PubMedCrossRefGoogle Scholar
  111. 111.
    Kamisuki S, Mao Q, Abu-Elheiga L, et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol. 2009;16(8):882–92.PubMedCrossRefGoogle Scholar
  112. 112.
    Arch JR, Ainsworth AT, Cawthorne MA, et al. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature. 1984;309(5964):163–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Weyer C, Tataranni PA, Snitker S, et al. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes. 1998;47(10):1555–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Redman LM, de Jonge L, Fang X, et al. Lack of an effect of a novel beta3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: a double-blind, placebo-controlled randomized study. J Clin Endocrinol Metab. 2007;92(2):527–31.PubMedCrossRefGoogle Scholar
  115. 115.
    Astrup A, Madsbad S, Breum L, et al. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9653):1906–13.PubMedCrossRefGoogle Scholar
  116. 116.
    Greenway FL, Whitehouse MJ, Guttadauria M, et al. Rational design of a combination medication for the treatment of obesity. Obesity (Silver Spring). 2009;17(1):30–9.CrossRefGoogle Scholar
  117. 117.
    Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605.PubMedCrossRefGoogle Scholar
  118. 118.
    Roth BL, Willins DL, Kristiansen K, Kroeze WK. 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther. 1998;79(3):231–57.PubMedCrossRefGoogle Scholar
  119. 119.
    Thomsen WJ, Grottick AJ, Menzaghi F, et al. Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther. 2008;325(2):577–87.PubMedCrossRefGoogle Scholar
  120. 120.
    Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363(3):245–56.PubMedCrossRefGoogle Scholar
  121. 121.
    Carai MA, Colombo G, Gessa GL. Rimonabant: the first therapeutically relevant cannabinoid antagonist. Life Sci. 2005;77(19):2339–50.PubMedCrossRefGoogle Scholar
  122. 122.
    Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet. 2007;369(9555):71–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Van Gaal L, Pi-Sunyer X, Despres JP, et al. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care. 2008;31 Suppl 2:S229–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Christensen R, Kristensen PK, Bartels EM, et al. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370(9600):1706–13.PubMedCrossRefGoogle Scholar
  125. 125.
    Christopoulou FD, Kiortsis DN. An overview of the metabolic effects of rimonabant in randomized controlled trials: potential for other cannabinoid 1 receptor blockers in obesity. J Clin Pharm Ther. 2011;36(1):10–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Addy C, Wright H, Van Laere K, et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab. 2008;7(1):68–78.PubMedCrossRefGoogle Scholar
  127. 127.
    Proietto J, Rissanen A, Harp JB, et al. A clinical trial assessing the safety and efficacy of the CB1R inverse agonist taranabant in obese and overweight patients: low-dose study. Int J Obes (Lond). 2010;34(8):1243–54.CrossRefGoogle Scholar
  128. 128.
    Aronne LJ, Tonstad S, Moreno M, et al. A clinical trial assessing the safety and efficacy of taranabant, a CB1R inverse agonist, in obese and overweight patients: a high-dose study. Int J Obes (Lond). 2010;34(5):919–35.CrossRefGoogle Scholar
  129. 129.
    Koch L. Obesity: taranabant no longer developed as an antiobesity agent. Nat Rev Endocrinol. 2010;6(6):300.PubMedCrossRefGoogle Scholar
  130. 130.
    Maffei M, Halaas J, Ravussin E, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155–61.PubMedCrossRefGoogle Scholar
  131. 131.
    Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol. 2000;21(3):263–307.PubMedCrossRefGoogle Scholar
  132. 132.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8(5):571–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480–4.PubMedCrossRefGoogle Scholar
  134. 134.
    Schwartz MW, Woods SC, Porte Jr D, et al. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.PubMedGoogle Scholar
  135. 135.
    Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282(16):1568–75.PubMedCrossRefGoogle Scholar
  136. 136.
    Van Heek M, Compton DS, France CF, et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest. 1997;99(3):385–90.PubMedCrossRefGoogle Scholar
  137. 137.
    Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Lo KM, Zhang J, Sun Y, et al. Engineering a pharmacologically superior form of leptin for the treatment of obesity. Protein Eng Des Sel. 2005;18(1):1–10.PubMedCrossRefGoogle Scholar
  139. 139.
    Wannamethee SG, Tchernova J, Whincup P, et al. Plasma leptin: associations with metabolic, inflammatory and haemostatic risk factors for cardiovascular disease. Atherosclerosis. 2007;191(2):418–26.PubMedCrossRefGoogle Scholar
  140. 140.
    Uwaifo GI, Ratner RE. Novel pharmacologic agents for type 2 diabetes. Endocrinol Metab Clin North Am. 2005;34(1):155–97.PubMedCrossRefGoogle Scholar
  141. 141.
    Hoogwerf BJ, Doshi KB, Diab D. Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc Health Risk Manag. 2008;4(2):355–62.PubMedGoogle Scholar
  142. 142.
    Aronne L, Fujioka K, Aroda V, et al. Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab. 2007;92(8):2977–83.PubMedCrossRefGoogle Scholar
  143. 143.
    Smith SR, Aronne LJ, Burns CM, et al. Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Diabetes Care. 2008;31(9):1816–23.PubMedCrossRefGoogle Scholar
  144. 144.
    Dunican KC, Adams NM, Desilets AR. The role of pramlintide for weight loss. Ann Pharmacother. 2010;44(3):538–45.PubMedCrossRefGoogle Scholar
  145. 145.
    Mack CM, Soares CJ, Wilson JK, et al. Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes (Lond). 2010;34(2):385–95.CrossRefGoogle Scholar
  146. 146.
    Roth JD, Roland BL, Cole RL, et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical ­studies. Proc Natl Acad Sci USA. 2008;105(20):7257–62.PubMedCrossRefGoogle Scholar
  147. 147.
    Ravussin E, Smith SR, Mitchell JA, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring). 2009;17(9):1736–43.CrossRefGoogle Scholar
  148. 148.
    Naslund E, King N, Mansten S, et al. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. Br J Nutr. 2004;91(3):439–46.PubMedCrossRefGoogle Scholar
  149. 149.
    Verdich C, Flint A, Gutzwiller JP, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86(9):4382–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Poon T, Nelson P, Shen L, et al. Exenatide improves glycemic control and reduces body weight in subjects with type 2 diabetes: a dose-ranging study. Diabetes Technol Ther. 2005;7(3):467–77.PubMedCrossRefGoogle Scholar
  151. 151.
    Vilsboll T, Zdravkovic M, Le-Thi T, et al. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care. 2007;30(6):1608–10.PubMedCrossRefGoogle Scholar
  152. 152.
    Rosenstock J, Klaff LJ, Schwartz S, et al. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care. 2010;33(6):1173–5.PubMedCrossRefGoogle Scholar
  153. 153.
    Madsbad S, Kielgast U, Asmar M, et al. An overview of once-weekly GLP-1 receptor agonists - available efficacy and safety data and perspectives for the future. Diabetes Obes Metab. 2011;13:394–407.PubMedCrossRefGoogle Scholar
  154. 154.
    Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32(1):84–90.PubMedCrossRefGoogle Scholar
  155. 155.
    Astrup A, Rossner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374(9701):1606–16.PubMedCrossRefGoogle Scholar
  156. 156.
    Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5(10):749–57.PubMedCrossRefGoogle Scholar
  157. 157.
    Stanley S, Wynne K, Bloom S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am J Physiol Gastrointest Liver Physiol. 2004;286(5):G693–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology. 2004;145(6):2687–95.PubMedCrossRefGoogle Scholar
  159. 159.
    Dakin CL, Gunn I, Small CJ, et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology. 2001;142(10):4244–50.PubMedCrossRefGoogle Scholar
  160. 160.
    Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab. 2003;88(10):4696–701.PubMedCrossRefGoogle Scholar
  161. 161.
    Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes. 2005;54(8):2390–5.PubMedCrossRefGoogle Scholar
  162. 162.
    Wynne K, Park AJ, Small CJ, et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond). 2006;30(12):1729–36.CrossRefGoogle Scholar
  163. 163.
    Polak JM, Bloom SR, Rayford PL, et al. Identification of cholecystokinin-secreting cells. Lancet. 1975;2(7943):1016–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev. 2006;86(3):805–47.PubMedCrossRefGoogle Scholar
  165. 165.
    Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol. 1973;84(3):488–95.PubMedCrossRefGoogle Scholar
  166. 166.
    Lieverse RJ, Jansen JB, Masclee AA, Lamers CB. Satiety effects of a physiological dose of cholecystokinin in humans. Gut. 1995;36(2):176–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Pi-Sunyer X, Kissileff HR, Thornton J, Smith GP. C-terminal octapeptide of cholecystokinin decreases food intake in obese men. Physiol Behav. 1982;29(4):627–30.PubMedCrossRefGoogle Scholar
  168. 168.
    Crawley JN, Beinfeld MC. Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature. 1983;302(5910):703–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Matson CA, Reid DF, Ritter RC. Daily CCK injection enhances reduction of body weight by chronic intracerebroventricular leptin infusion. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1368–73.PubMedGoogle Scholar
  170. 170.
    Wang L, Barachina MD, Martinez V, et al. Synergistic interaction between CCK and leptin to regulate food intake. Regul Pept. 2000;92(1–3):79–85.PubMedCrossRefGoogle Scholar
  171. 171.
    Zac-Varghese S, Tan T, Bloom SR. Hormonal interactions between gut and brain. Discov Med. 2010;10(55):543–52.PubMedGoogle Scholar
  172. 172.
    Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.PubMedCrossRefGoogle Scholar
  173. 173.
    Yang J, Brown MS, Liang G, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387–96.PubMedCrossRefGoogle Scholar
  174. 174.
    Kamegai J, Tamura H, Shimizu T, et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes. 2001;50(11):2438–43.PubMedCrossRefGoogle Scholar
  175. 175.
    Tamura H, Kamegai J, Shimizu T, et al. Ghrelin stimulates GH but not food intake in arcuate nucleus ablated rats. Endocrinology. 2002;143(9):3268–75.PubMedCrossRefGoogle Scholar
  176. 176.
    Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Tschop M, Wawarta R, Riepl RL, et al. Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest. 2001;24(6):RC19–21.PubMedGoogle Scholar
  178. 178.
    Cummings DE, Frayo RS, Marmonier C, et al. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287(2):E297–304.PubMedCrossRefGoogle Scholar
  179. 179.
    Salbe AD, Tschop MH, DelParigi A, et al. Negative relationship between fasting plasma ghrelin concentrations and ad libitum food intake. J Clin Endocrinol Metab. 2004;89(6):2951–6.PubMedCrossRefGoogle Scholar
  180. 180.
    Tschop M, Weyer C, Tataranni PA, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13.PubMedCrossRefGoogle Scholar
  182. 182.
    Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMedCrossRefGoogle Scholar
  183. 183.
    Strassburg S, Anker SD, Castaneda TR, et al. Long-term effects of ghrelin and ghrelin receptor agonists on energy balance in rats. Am J Physiol Endocrinol Metab. 2008;295(1):E78–84.PubMedCrossRefGoogle Scholar
  184. 184.
    Halem HA, Taylor JE, Dong JZ, et al. A novel growth hormone secretagogue-1a receptor antagonist that blocks ghrelin-induced growth hormone secretion but induces increased body weight gain. Neuroendocrinology. 2005;81(5):339–49.PubMedCrossRefGoogle Scholar
  185. 185.
    Helmling S, Maasch C, Eulberg D, et al. Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc Natl Acad Sci USA. 2004;101(36):13174–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Kobelt P, Helmling S, Stengel A, et al. Anti-ghrelin Spiegelmer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats. Gut. 2006;55(6):788–92.PubMedCrossRefGoogle Scholar
  187. 187.
    Shearman LP, Wang SP, Helmling S, et al. Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. Endocrinology. 2006;147(3):1517–26.PubMedCrossRefGoogle Scholar
  188. 188.
    Diniz Mde F, Azeredo Passos VM, Diniz MT. Bariatric surgery and the gut-brain communication–the state of the art three years later. Nutrition. 2010;26(10):925–31.PubMedCrossRefGoogle Scholar
  189. 189.
    Tritos NA, Maratos-Flier E. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides. 1999;33(5):339–49.PubMedCrossRefGoogle Scholar
  190. 190.
    Shimada M, Tritos NA, Lowell BB, et al. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396(6712):670–4.PubMedCrossRefGoogle Scholar
  191. 191.
    Ito M, Gomori A, Ishihara A, et al. Characterization of MCH-mediated obesity in mice. Am J Physiol Endocrinol Metab. 2003;284(5):E940–5.PubMedGoogle Scholar
  192. 192.
    Ludwig DS, Tritos NA, Mastaitis JW, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest. 2001;107(3):379–86.PubMedCrossRefGoogle Scholar
  193. 193.
    An S, Cutler G, Zhao JJ, et al. Identification and characterization of a melanin-concentrating hormone receptor. Proc Natl Acad Sci USA. 2001; 98(13):7576–81.PubMedCrossRefGoogle Scholar
  194. 194.
    Marsh DJ, Weingarth DT, Novi DE, et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA. 2002;99(5): 3240–5.PubMedCrossRefGoogle Scholar
  195. 195.
    Kowalski TJ, McBriar MD. Therapeutic potential of melanin-concentrating hormone-1 receptor antagonists for the treatment of obesity. Expert Opin Investig Drugs. 2004;13(9):1113–22.PubMedCrossRefGoogle Scholar
  196. 196.
    Borowsky B, Durkin MM, Ogozalek K, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med. 2002;8(8):825–30.PubMedGoogle Scholar
  197. 197.
    Ito M, Ishihara A, Gomori A, et al. Mechanism of the anti-obesity effects induced by a novel melanin-concentrating hormone 1-receptor antagonist in mice. Br J Pharmacol. 2010;159(2):374–83.PubMedCrossRefGoogle Scholar
  198. 198.
    Kowalski TJ, Spar BD, Weig B, et al. Effects of a selective melanin-concentrating hormone 1 receptor antagonist on food intake and energy homeostasis in diet-induced obese mice. Eur J Pharmacol. 2006;535(1–3):182–91.PubMedCrossRefGoogle Scholar
  199. 199.
    Audinot V, Zuana OD, Fabry N, et al. S38151 [p-guanidinobenzoyl-[Des-Gly(10)]-MCH(7-17)] is a potent and selective antagonist at the MCH(1) receptor and has anti-feeding properties in vivo. Peptides. 2009;30(11):1997–2007.PubMedCrossRefGoogle Scholar
  200. 200.
    Mountjoy KG, Mortrud MT, Low MJ, et al. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol. 1994;8(10):1298–308.PubMedCrossRefGoogle Scholar
  201. 201.
    Roselli-Rehfuss L, Mountjoy KG, Robbins LS, et al. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA. 1993;90(19):8856–60.PubMedCrossRefGoogle Scholar
  202. 202.
    Murphy B, Nunes CN, Ronan JJ, et al. Melanocortin mediated inhibition of feeding behavior in rats. Neuropeptides. 1998;32(6):491–7.PubMedCrossRefGoogle Scholar
  203. 203.
    Trivedi P, Jiang M, Tamvakopoulos CC, et al. Exploring the site of anorectic action of peripherally administered synthetic melanocortin peptide MT-II in rats. Brain Res. 2003;977(2):221–30.PubMedCrossRefGoogle Scholar
  204. 204.
    Kuo JJ, Silva AA, Hall JE. Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function. Hypertension. 2003;41(3 Pt 2):768–74.PubMedCrossRefGoogle Scholar
  205. 205.
    Krishna R, Gumbiner B, Stevens C, et al. Potent and selective agonism of the melanocortin receptor 4 with MK-0493 does not induce weight loss in obese human subjects: energy intake predicts lack of weight loss efficacy. Clin Pharmacol Ther. 2009;86(6):659–66.PubMedCrossRefGoogle Scholar
  206. 206.
    Stanley BG, Magdalin W, Seirafi A, et al. The perifornical area: the major focus of (a) patchily distributed hypothalamic neuropeptide Y-sensitive feeding system(s). Brain Res. 1993;604(1–2):304–17.PubMedCrossRefGoogle Scholar
  207. 207.
    Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides. 1986;7(6):1189–92.PubMedCrossRefGoogle Scholar
  208. 208.
    Gerald C, Walker MW, Criscione L, et al. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature. 1996;382(6587):168–71.PubMedCrossRefGoogle Scholar
  209. 209.
    Criscione L, Rigollier P, Batzl-Hartmann C, et al. Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J Clin Invest. 1998;102(12):2136–45.PubMedCrossRefGoogle Scholar
  210. 210.
    Erondu N, Gantz I, Musser B, et al. Neuropeptide Y5 receptor antagonism does not induce clinically meaningful weight loss in overweight and obese adults. Cell Metab. 2006;4(4):275–82.PubMedCrossRefGoogle Scholar
  211. 211.
    Widdowson PS, Henderson L, Pickavance L, et al. Hypothalamic NPY status during positive energy balance and the effects of the NPY antagonist, BW 1229U91, on the consumption of highly palatable energy-rich diet. Peptides. 1999;20(3):367–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dhiraj G. Kabra
    • 1
  • Uma D. Kabra
    • 1
  • Matthias H. Tschöp
    • 1
  • Susanna Hofmann
    • 1
  1. 1.Cincinnati Diabetes and Obesity Centre, Division of Internal MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations