Transforming Images in a DGS: The Semiotic Potential of the Dragging Tool for Introducing the Notion of Conditional Statement

Chapter

Abstract

Research has shown that the tools provided by dynamic geometry systems (DGSs) impact on students’ approach to Euclidean Geometry and specifically on investigating open problems asking for producing conjectures. Building on the work of Arzarello, Olivero, and other researchers, the study addresses the use of specific dragging modalities in the solution of conjecture problems. Within the frame of the theory of semiotic mediation (TSM), the investigation aims at describing the semiotic potential of the dragging tool: how personal meanings emerging from students’ activities in a DGS can potentially be transformed into mathematical meanings. A theoretical discussion is presented, concerning the possible meanings, emerging in respect to the different dragging modalities, their relationship with mathematical meanings concerning conjectures, and conditional statements. Further, it is described how meanings emerge during different exploratory processes and how they may be related to the basic components of a conditional statement: premise, conclusion, and conditional link between them. Some examples discussed are drawn from a teaching experiment where participants were introduced to certain ways of dragging and then interviewed while working on open problem activities.

Keywords

Conclusion Conditional link Conditional statement Conjecture Didactic cycle Direct invariant Dragging modalities Dynamic geometry Indirect invariant Invariant Maintaining dragging Open problem Premise Semiotic potential Theory of semiotic mediation (TSM) Unfolding of semiotic potential 

References

  1. Arsac, G., & Mante, M. (1983). Des “problème ouverts” dans nos classes du premier cycle. Petit x, 2, 5–33.Google Scholar
  2. Arzarello, F. (2000). Inside and outside: Spaces, times and language in proof production. Proceedings of PME 24: Psychology of Mathematics Education 24th International Conference, (1, pp. 23–38). Hiroshima, Japan.Google Scholar
  3. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in dynamic geometry environments. ZDM The International Journal on Mathematical Education, 34(3), 66–72.Google Scholar
  4. Baccaglini-Frank, A. (2010). Conjecturing in dynamic geometry: A model for conjecture-generation through maintaining dragging. Doctoral dissertation, University of New Hampshire, Durham, NH.Google Scholar
  5. Baccaglini-Frank, A. (in press). The maintaining dragging scheme and the notion 2 instrumented abduction. Proceedings of the 10th Conference of the PME-NA, Columbus, OH.Google Scholar
  6. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of computers for Mathematical Learning, 15(3), 225–253.CrossRefGoogle Scholar
  7. Baccaglini-Frank, A., Mariotti, M. A., & Antonini, S. (2009). Different perceptions of invariants and generality of proof in dynamic geometry. In M. Tzekaki & H. Sakonidis (Eds.), Proceedings of PME 33: Psychology of mathematics education 33rd international conference (2, pp. 89–96). Thessaloniki: PME.Google Scholar
  8. Bartolini Bussi, M. G. 1998. Verbal interaction in mathematics classroom: a Vygotskian analysis. In H. Steinbring, M. G. Bartolini Bussi & A. Sierpinska (Eds.), Language and communication in mathematics classroom (pp. 65–84). Reston: NCTM.Google Scholar
  9. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones & R. Lesh, D. Tirosh (Eds.), Handbook of international research in mathematics education, second revised edition (pp. 746–805). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  10. Battista, M. T. (2007). The development of geometric and spatial thinking. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 843–908). Reston, VA: NCTM.Google Scholar
  11. Boero, P., Garuti, R., & Lemut, E. (2007). Approaching theorems in grade VIII: Some mental processes underlying producing and proving conjectures, and conditions suitable to enhance them. In P. Boero (Ed.), Theorems in schools: From history, epistemology and cognition to classroom practice (pp. 247–262). Rotterdam: Sense Publishers.Google Scholar
  12. Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modelling, visualization and experimentation. New York: Springer.Google Scholar
  13. Goldenberg, E. P. (1995). Rumination about dynamic imagery. In R. Sutherland & J. Mason (Eds.), Exploiting mental imagery with computers in mathematics education (pp. 203–223). New York: Springer.Google Scholar
  14. Hadas, N., Hershkowitz, R., Schwarz, B. B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44(1), 127–150.CrossRefGoogle Scholar
  15. Hasan, R. (2002). Semiotic mediation, language and society: three exotropic theories – Vygotsky, Halliday Bernstein. In J. Webster (Ed.) Language, society and consciousness: the collected works of Ruqaya Hasan (Vol. 1). Equinox, London. http://lchc.ucsd.edu/MCA/Paper/JuneJuly05/HasanVygHallBernst.pdf.Accessed 20 March 2008.
  16. Healy, L. (2000). Identifying and explaining geometrical relationship: interactions with robust and soft Cabri constructions. Proceedings of PME 24: Psychology of Mathematics Education 24th International Conference (1, pp. 103–117), Hiroshima: Hiroshima University.Google Scholar
  17. Healy, L., Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235–256.CrossRefGoogle Scholar
  18. Hölzl, R. (1996). How does ‘dragging’ affect the learning of geometry. International Journal of Computers for Mathematical Learning, 1, 169–187.CrossRefGoogle Scholar
  19. Hölzl, R. (2001). Using DGS to add contrast to geometric situations: A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.CrossRefGoogle Scholar
  20. Hoyles, C. (1993). Microworlds/schoolworlds: The transformation of an innovation. In C. Keitel & K. Ruthven (Eds.) Learning from computers: Mathematics education and technology. NATO ASI Series. New York: Springer-Verlag.Google Scholar
  21. Jackiw, N. (2009). The Geometer’s sketchpad (Version 5)(computer software). Berkeley, CA: Key Curriculum Press.Google Scholar
  22. Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when using dynamic geometry software. Educational Studies in Mathematics, 44(1 & 2), 55–85.CrossRefGoogle Scholar
  23. Kozulin, A. (2003). Psychological tools and mediated learning. In A. Kozulin, B. Gindis, V. S. Ageyev & S. M. Miller (Eds.) Vygotsky’s educational theory in cultural context (pp. 15–38). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44(1/2), 151–156.CrossRefGoogle Scholar
  25. Laborde, C. (2005). Robust and soft constructions. Proceedings of the 10th Asian technology conference in mathematics (pp. 22–35). Korea, National University of Education.Google Scholar
  26. Laborde, J.-M., Bellemain, F. (1995). Cabri-géomètre II and Cabri-géomètre II plus (computer software). Dallas, USA: Texas Instruments and Grenoble. France: Cabrilog.Google Scholar
  27. Laborde, C., Laborde, J. M. (1991). Problem solving in geometry: From microworlds to intelligent computer environments. In Ponte et al. (Eds.), Mathematical problem solving and new information technologies (pp. 177–192). NATO AS1 Series F, 89.Google Scholar
  28. Laborde, J. M., & Sträßer, R. (1990). Cabri Géomètre, a microworld of geometry for guided discovery learning. Zentralblatt fuÌr Didaktik der Mathematik, 22(5), 171–177.Google Scholar
  29. Laborde, C., Kynigos, C., Hollebrands, K., Sträßer, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education. Past, present and future (pp. 275–304). Rotterdam: Sense.Google Scholar
  30. Leung, A., Lopez-Real, F. (2000). An analysis of students’ explorations and constructions using Cabri geometry. In M. A. Clements, H. Tairab & W. K. Yoong (Eds.) Science, mathematics and technical education in the 20th and 21st centuries (pp. 144–154). Brunei: Universiti Brunei Darussalam.Google Scholar
  31. Leung, A., Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: A case of proof by contradiction. International Journal of Computers for Mathematical Learning, 7, 145–165.CrossRefGoogle Scholar
  32. Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry. International Journal of Mathematical Education in Science and Technology, 37(6), 665–679.CrossRefGoogle Scholar
  33. Mariotti, M. A., Maracci, M. (2010). Un artefact comme outils de médiation sémiotique: une ressource pour l’enseignant. In G. Gueudet & L. Trouche. Ressources vives. Le travail documentaire des professeurs en mathématiques (pp. 91–107). Rennes: Presses Universitaires de Rennes et INRP.Google Scholar
  34. Mariotti, M. (2000). Introduction to proof: The mediation of a dynamic software environment. Educational Studies in Mathematics, 44(1 and 2), 25–53.CrossRefGoogle Scholar
  35. Mariotti, M. A. (2001). Justifying and proving in the cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257–281.CrossRefGoogle Scholar
  36. Mariotti, M. A. (2007). Geometrical proof: the mediation of a microworld. In P. Boero (Ed.) Theorems in school: From history epistemology and cognition to classroom practice (pp. 285–304). Rotterdam: Sense Publishers.Google Scholar
  37. Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: the role of the teacher. ZDM The International Journal on Mathematics Education, 41, 427–440.CrossRefGoogle Scholar
  38. Meira, L. (1998). Making sense of instructional devices: the emergence of transparency in mathematical activity. Journal for Research in Mathematics Education, 29(2), 121–142.Google Scholar
  39. Noss, R., Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  40. Olivero, F. (2001). Conjecturing in open geometric situations in a dynamic geometry environment: an exploratory classroom experiment. In C. Morgan & K. Jones (Eds.), Research in Mathematics Education (Vol. 3, pp. 229–246). London.Google Scholar
  41. Olivero, F. (2002). Proving within dynamic geometry environments, Doctoral Dissertation, Graduate School of Education, Bristol.Google Scholar
  42. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM The International Journal on Mathematical Education, 40, 385–400.CrossRefGoogle Scholar
  43. Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.Google Scholar
  44. Restrepo, A. M. (2008). Génèse instrumentale de deplacement en géométrie dinamyque shez des élèves de 6eme, Ph.D Thesis, Ecole doctorale des Mathématiques, Sciences et Technologies de l’Information, Informatique, Université Joseph Fourier, Grenoble, France.Google Scholar
  45. Silver, E. A. (1995). The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. ZDM The International Journal on Mathematical Education, 27(2), 67–72.Google Scholar
  46. Sträßer, R. (2001). Cabri-geometre: Does dynamic geometry software (DGS) change geometry and its teaching and learning? International Journal of Computers for Mathematical Learning, 6(3), 319–333.CrossRefGoogle Scholar
  47. Talmon, V., Yerushalmy, M. (2004). Understanding dynamic behavior: Parent-child relations in dynamic geometry environments. Educational Studies in Mathematics, 57, 91–119.CrossRefGoogle Scholar
  48. Vygotsky, L. S. (1978). Mind in society, the development of higher psychological processes. Cambridge: Harvard University Press.Google Scholar
  49. Vygotsky, L. S. (1981). The genesis of higher mental functions. In J. V. Wertsch (Ed.), The concept of activity in soviet psychology. Armonk, NY: Sharpe.Google Scholar
  50. Wertsch, J. V., Addison Stone, C. (1985). The concept of internalization in Vygotsky’s account of the genesis of higher mental functions. In J. V. Wertsch (Ed.), Culture, communication and cognition: Vygotskian perspectives (pp. 162–166). New York: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Department of Information Ingeneering and MathematicsUniversity of SienaSienaItaly

Personalised recommendations