Constructing Knowledge by Transformation, Diagrammatic Reasoning in Practice

Chapter

Abstract

The aim of this article is to present a certain view on the reading of mathematical texts. Using an example it will be shown that readings of mathematical texts may be codetermined by different readers’ transformations. As an example of such a kind of reading, a theorem from a nineteenth-century-geometry textbook is introduced. To comprehend the meaning of this geometry and to be able to follow all the arguments offered, the text and some proofs are transformed into a more up-to-date kind of geometry. This transformation can be characterized by a transfer of the author’s use of diagrams to the reader’s use of diagrams. In addition, this transfer of use can be supplemented occasionally by the use of an alternative set of diagrams. This means that the use of diagrams that are well known to the reader of a mathematical text may considerably support his/her construction of knowledge.

Keywords

Semiotics Diagrammatic reasoning Transformation Geometry History of mathematics Construction of knowledge Writing Reading Problem solving 

References

  1. Anderson, M., Sáenz-Ludlow, A., Zellweger, S., & Cifarelli, V. V. (Eds.). (2003). Educational perspectives on mathematics as semiosis: from thinking to interpreting to knowing. New York: Legas.Google Scholar
  2. Arzarello, F., Olivero, F., Domingo, D., & Robutti, O. (2002). A cognitive analyisis of dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.Google Scholar
  3. Bakker, A., & Hoffmann, M. H. G. (2005). Diagrammatic reasoning as the basis for developing concepts: A semiotic analysis of students’ learning about statistical distribution. Educational Studies in Mathematics, 60(3), 333–358.CrossRefGoogle Scholar
  4. Boehm, G. (1994). Die Wiederkehr der Bilder. In G. Boehm (Ed.), Was ist ein Bild? (pp. 11–38). München: Wilhelm Fink Verlag.Google Scholar
  5. Cobb, P., Yackel, E., & McLain, K. (Eds.). (2000). Symbolizing, Modeling and Instructional Design. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar
  6. Coulmas, F. (2003). Writing systems. An introduction to their linguistic analysis. Cambridge UK: Cambridge University Press.Google Scholar
  7. Dörfler, W. (2006). Diagramme und Mathematikunterricht. Journal für Mathematik-Didaktik, 27(3/4), 200–219.CrossRefGoogle Scholar
  8. Freudenthal, H. (1973). Mathematik als paedagogische Aufgabe. Stuttgart: Klett.Google Scholar
  9. Goldin, G. (1998a). The pme working group on representations. Journal of Mathematical Behavior, 17(2), 283–299.CrossRefGoogle Scholar
  10. Goldin, G. (1998b). Representational systems, learning and problem solving in mathematics. Journal of Mathematical Behavior, 17(2), 137–165.CrossRefGoogle Scholar
  11. Goodman, N. (1976). Languages of art. An approach to a theory of symbols. Indianapolis: Hackett Publishing Company.Google Scholar
  12. Harris, R. (2001). Rethinking writing. London: Athlone Press.Google Scholar
  13. Heintz, B. (2000). Die Innenwelt der Mathematik. Wien: Springer.CrossRefGoogle Scholar
  14. Hoffmann, M. (Ed.). (2003). Mathematik verstehen. Semiotische Perspektiven. Hildesheim. Berlin: Franzbecker.Google Scholar
  15. Hoffmann, M. H. G. (2005). Erkenntnisentwicklung. Frankfurt am Main: Vittorio Klostermann.Google Scholar
  16. Hoffmann, M. H. G. (2006). What is a "semiotic perspective", and what could it be? Some comments on the contributions to this special issue. Educational Studies in Mathematics, 61, 279–291.CrossRefGoogle Scholar
  17. Kadunz, G. (2006). Schrift und Diagramm: Mittel beim Lernen von Mathematik. Journal für Didaktik der Mathematik, 27(3/4), 220–239.CrossRefGoogle Scholar
  18. Krämer, S. (2003). >Schriftbildlichkeit< oder: Über eine (fast) vergessene Dimension der Schrift. Bild, Schrift, Zahl. S. Krämer and H. Bredekamp (157–176). München: Wilhelm Fink.Google Scholar
  19. Latour, B. (1987). Science in Action: How to Follow Scientists and Engineers through Society. Cambridge, MA: Harvard University Press.Google Scholar
  20. Mitchell, W. J. T. (1994). Picture theory. Chicago: The University of Chicago Press.Google Scholar
  21. Nöth, W. (2000). Handbuch der Semiotik (2 ed.). Stuttgart, Weimar: J.B. Metzler.Google Scholar
  22. Oliveri, G. (1997). Mathematics, a science of patterns? Synthese, 112, 379–402.CrossRefGoogle Scholar
  23. Peirce, C. S. (1998). The essential peirce = EP. Bloomington and Indianapolis: Indiana University Press.Google Scholar
  24. Presmeg, N. (2006). Semiotics and the “connections” standard: significance of semiotics for teacher of mathematics. Educational Studies in Mathematics, 61, 163–182.CrossRefGoogle Scholar
  25. Sáenz-Ludlow, A., & Presmeg, N. (2006). Guest editorial semiotic perspectives on learning mathematics and communicating mathematically. Educational Studies in Mathematics, 61, 1–10.CrossRefGoogle Scholar
  26. Schreiber, C. (2010). Semiotische Prozess-Karten—chatbasierte Inskriptionen in mathematischen Problemlöseprozesse. Münster: Waxmann.Google Scholar
  27. Seeger, F. (2000). Lernen mit grafischen Repräsentationen: Psychologische und semiotische Überlegungen. Semiotik, 22(1), 51–79.Google Scholar
  28. Simon, M. (1915). Analytische Geometrie der Ebene (3 ed.). Berlin, Leipzig: Goeschen.Google Scholar
  29. Stjernfelt, F. (2000). Diagrams as centerpiece of a peircian epistemoloy. Transactions of Charles S. Peirce Society, XXXVI(3), 357–384.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.Institute of MathematicsAlpen-Adria University of KlagenfurtKlagenfurtAustria

Personalised recommendations