Mathematical Moments in a Human Life: Narratives on Transformation

  • Barbro Grevholm


The purpose of the chapter is to use narratives in order to illustrate the characteristics of the human perception of mathematics. The transformation over time of views of mathematics will be enlightened by the changing perceptions of the individual. The many varied faces of mathematics will offer images of the multiple ways and situations in which mathematics plays an important role in society and culture. Mathematics education research will supply the basis for interpretation of the narratives and the transformations of mathematics.


Mathematics Teacher Student Teacher Professional Identity Life Story Teacher Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atkinson, R. (1998). The life story interview. Thousand Oaks, CA: Sage.Google Scholar
  2. Bosch, M., & Gascon, J. (2006). 25 years of the didactic transposition. ICMI Bulletin, No. 58 (pp. 51–65), June 2006.Google Scholar
  3. Brandell, G., Hemmi, K., & Thunberg, H. (2008). The widening gap-A Swedish perspective. Mathematics Education Research Journal, 20(2), 38–56.CrossRefGoogle Scholar
  4. Bruner, J. (1996). The culture of education. Cambridge, Massachusetts: Harvard University Press.Google Scholar
  5. Carpenter, T. P., & Fennema, E. (1988). Research and cognitively guided instruction. In E. Fennema, T. P. Carpenter & S. J. Lamon (Eds.), Integrating research on teaching and learning mathematics (pp. 2–19). Madison: National Center for Research in Mathematical Sciences Education, University of Wisconsin.Google Scholar
  6. Chevallard, Y. (1985). La transposition didactique du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage.Google Scholar
  7. Connelly, F. M., & Clandinin, D. J. (1990). Stories of experience and narrative inquiry. Educational Researcher, 19(5), 2–14.CrossRefGoogle Scholar
  8. Connelly, F. M., & Clandinin, D. J. (2000). Narrative inquiry. San Francisco: Jossey-Bass Inc.Google Scholar
  9. Grevholm, B. (2006). Matematikdidaktikens möjligheter i en forskningsbaserad lärarut-bildning. (The opportunities of mathematics didactics in a research based teacher education). In S. Ongstad (Ed.), Fag og didaktikk i lærerutdanning. Kunnskap i grenseland (Subject and didactics mathematics, in teacher education. Knowledge in borderland) (pp. 183–206). Oslo: Universitetsforlaget.Google Scholar
  10. Helldén, G. (2003). Personal context and continuity of human thought as recurrent themes in a longitudinal Study. Scandinavian Journal of Educational Research, 47(2), 205–217.CrossRefGoogle Scholar
  11. Hoskonen, K. (2007). Mathematics is – favourite subject, boring or compulsory. In D. Pitta – Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 248–257). Accessed 3 May 2008.
  12. Hundeland, P. S. (2010). Matematikklærerens kompetanse. En studie om hva lærerne på videregående trinn vektlegger i sin matematikkundervisning. (The mathematics teacher’s competence. A study on what teachers in upper secondary school value in their mathematics teaching). Doctoral thesis. University of Agder.Google Scholar
  13. Kaasila, R. (2007). Using narrative inquiry for investigating the becoming of a mathematics teacher. ZDM—International Journal of Mathematics Education, 39(3), 205–213.CrossRefGoogle Scholar
  14. Kajander, A., & Lovric, M. (2005). Transition from secondary to tertiary mathematics: McMaster University experience. International Journal of Mathematics Education in Science and Technology, 36(2–3), 149–160.CrossRefGoogle Scholar
  15. Kislenko, K. (2011). What makes learning mathematics an enjoyable experience: Listening to Estonian pupils’ voices. International Journal for Studies in Mathematics Education, 4(1), 31-61.Google Scholar
  16. Koehler, M., & Grouws, D. A. (1992). Mathematics teaching practices and their effects. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 115–126). New York: MacMillan.Google Scholar
  17. Långström, S., & Viklund, U. (2010). Metoder – undervisning och framträdande. (Methods—eaching and performance). Lund: Studentlitteratur.Google Scholar
  18. Mura, R. (1993). Images of mathematics held by university teachers of mathematical sciences. Educational Studies of Mathematics, 25, 375–385.CrossRefGoogle Scholar
  19. Nardi, E., & Steward, S. (2003). Is mathematics T.I.R.E.D? A profile of quiet disaffection in the secondary mathematics classroom. British Educational Research Journal, 29(3), 345–367.CrossRefGoogle Scholar
  20. Pehkonen, E. (2003). Læreres og elevers oppfatninger som en skjult faktor i matematikkundervisningen (Teachers’ and students’ conceptions of mathematics as a hidden factor in teaching). In B. Grevholm (Ed.), Matematikk for skolen (pp. 154–181). Bergen: Fagbokforlaget.Google Scholar
  21. Petrén, L. (1911). Extension de la méthode de Laplace aux equations. Lund: Kungliga Fysiografiska Sällskapets Skriftserie.Google Scholar
  22. Richardson, L. (1990). Narrative and sociology. Journal of Contemporary Ethnography, 19, 116–135.CrossRefGoogle Scholar
  23. Stodolsky, S. S., Salk, S., & Claessner, B. (1991). Student views about learning math and social studies. American Educational Research Journal, 28(1), 89–116.CrossRefGoogle Scholar
  24. Strässer, R. (2000). Conclusions. In A. Bessot & J. Ridgeway (Eds.), Education for mathematics in the workplace. Dordrecht: Kluwer Academic Publishers.Google Scholar
  25. Svensk ordbok (2009). Stockholm: Svenska Akademien.Google Scholar
  26. Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495–511). New York: MacMillan.Google Scholar
  27. Treisman, P. U. (1992). Studying students studying calculus: A look at the lives of minority mathematics students in college. The College Mathematics Journal, 23(5), 362–372.CrossRefGoogle Scholar
  28. Walberg, H. J. (1988). Synthesis of research on time and learning. Educational Researcher, 26(7), 13–22.Google Scholar
  29. Williams, J., & Wake, G. D. (2007a). Black boxes in workplace mathematics. Educational Studies in Mathematics, 64, 345–371.CrossRefGoogle Scholar
  30. Williams, J., & Wake, G. D. (2007b). Metaphors and models in translation between college and workplace mathematics. Educational Studies in Mathematics, 64(3), 345–371.CrossRefGoogle Scholar
  31. Williams, J., Black, L., Hernandez-Marinez, P., Davis, P., Pampaka, M., & Wake, G. (2008). Repertoires of aspiration, narratives of identity, and cultural models of mathematics in practice. In M. César, & K. Kumpulainen (Eds.), Social interactions in multicultural settings (pp. 1–30). Rotterdam: Sense Publishers.Google Scholar
  32. Wilson, S. M., Shulman, L. S., & Richert, A. E. (1987). “150 different ways” of knowing. Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring teachers’ thinking (pp. 104–124). London: Cassell Educational Limited.Google Scholar
  33. Wood, L. (2001). The secondary-tertiary interface. In D. Holton (Ed.), The teaching and learning of mathematics at university level. An ICMI study. Dordrecht: Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  1. 1.University of Agder, Narvik University College, Norway and Kristianstad University, Kristiansand, SwedenLundSweden

Personalised recommendations