Skip to main content

Environmental Fate of Human Pharmaceuticals

  • Chapter
  • First Online:
Human Pharmaceuticals in the Environment

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 4))

Abstract

In recent years, environmental fate information for human pharmaceuticals has become increasingly available in the peer-reviewed literature. However, we still only have a limited understanding of the many environmental fate and transport processes affecting exposure of pharmaceuticals in aquatic and terrestrial systems. Moreover, because the physical–chemical properties of human pharmaceuticals differ from more traditional contaminants, current experimental and modeling approaches for measuring or predicting underlying fate characteristics and subsequent exposure do not necessarily work well for pharmaceuticals. Therefore, in this chapter, we discuss those factors and processes affecting the fate and transport of pharmaceuticals in the environment. We discuss the suitability of existing ’fate testing and modeling methodologies and finally develop recommendations on future research to address some of the major knowledge gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams RT (ed) (2003) Human pharmaceuticals—assessing the impacts on aquatic ecosystems. SETAC Press, Pensacola

    Google Scholar 

  2. Kümmerer K (ed) (2008) Pharmaceuticals in the environment. Springer, New York

    Google Scholar 

  3. Kulshrestha PJ, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38(15):4097–4105

    Article  CAS  Google Scholar 

  4. Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14

    Article  CAS  Google Scholar 

  5. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34(20):4259–4265

    Article  CAS  Google Scholar 

  6. ECPA (2000) ECPA position paper on soil non-extractable residues. European Crop Protection Association, Brussels

    Google Scholar 

  7. Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ Pollut 108:19–43

    Article  CAS  Google Scholar 

  8. Giron D (2003) Characterization of salts of drug substances. J Therm Anal Calorim 73:441–457

    Article  CAS  Google Scholar 

  9. Elder JP (1997) Sublimation measurements of pharmaceutical compounds by isothermal thermogravimetry. J Therm Anal Calorim 49:897–905

    Article  CAS  Google Scholar 

  10. Heng JYY et al (2005) The physiochemical and surface properties of solid state pharmaceutical solids. World Congress of Chemical Engineering, 7th Glowgow, UK, pp 1–10

    Google Scholar 

  11. ASC (1990) Handbook of chemical property estimation methods, 14-1—20. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Vapor pressure. ASC, Washington

    Google Scholar 

  12. Boethling RS, Mackay D (eds) (2000) Handbook of property estimation methods for chemicals. Lewis Publishers, Boca Raton

    Google Scholar 

  13. Tetko IV, Poda GI (2004) Application of ALOGPS 2.1t predict log D distribution coefficient for Pfizer proprietary compounds. J Med Chem 47(23):5601–5604

    Article  CAS  Google Scholar 

  14. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  15. Ter Laak TL, Gebbink WA, Tolls J (2006) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin and oxytetracycline to soil. Environ Toxicol Chem 25(4):904

    Article  Google Scholar 

  16. Strock TJ, Sassman SA, Lee LS (2005) Sorption and related properties of the swine antibiotic carbadox and associated n-oxide reduced metabolites. Environ Sci Technol 39:3134

    Article  CAS  Google Scholar 

  17. Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452

    Article  CAS  Google Scholar 

  18. Monteiro SC, Boxall ABA (2009) Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ Toxicol Chem 28(12):2546–2554

    Google Scholar 

  19. Boxall ABA, Blackwell PA, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters 131:19–28

    Google Scholar 

  20. Thiele-Bruhn S, Aust MO (2004) Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Contam Toxicol 47(1):31

    Article  CAS  Google Scholar 

  21. Buser H et al (1998) Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environ Sci Technol 32(1):188–192

    Article  CAS  Google Scholar 

  22. Kolpin D et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  23. Strenn B et al (2003) The elimination of selected pharmaceuticals in wastewater treatment-lab scale experiments with different sludge retention times. Water Resour Manage II 8:227–236

    Google Scholar 

  24. Strenn B et al (2004) Carbamazepine, diclofenac, ibuprofen and bezafibrate-investigations on the behavior of selected pharmaceuticals during wastewater treatment. Water Sci Technol 5:269–276

    Google Scholar 

  25. Swiener C et al (2003) Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen and diclofenac. Sci Total Environ 309(1–3):201–211

    Google Scholar 

  26. OECD (2008) OECD guideline for the testing of chemicals. TG 314B biodegradation in activated sludge guideline. OECD, Paris

    Google Scholar 

  27. Loffler D et al (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218

    Article  Google Scholar 

  28. Kunke U, Radke M (2008) Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment. Environ Sci Technol 42:7273–7279

    Article  Google Scholar 

  29. Ericson J (2007) An evaluation of the OECD 308 water/sediment system for investigating the biodegradation of pharmaceuticals. Environ Sci Technol 41(16):5803–5811

    Article  CAS  Google Scholar 

  30. Diaz-Cruz MS et al (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal Chem 22(6):340–351

    Article  CAS  Google Scholar 

  31. Topp E, Hendel J, Lapen D, Chapman R (2008) Fate of the non-steroidal anti-inflammatory drug naproxen in agricultural soil receiving liquid municipal biosolids. Environ Toxicol Chem 27(10):2005–2010

    Google Scholar 

  32. Collucci M, Bork H, Topp E (2001) Persistence of estrogenic hormones in agricultural soils (I—17-beta estradiol and estrone). J Environ Qual 30:2070–2076

    Article  Google Scholar 

  33. Topp E, Hendel JG, Lu Z, Chapman R (2006) Biodegradation of caffeine in agricultural soils. Can J Soil Sci 86(2–3):533–544

    CAS  Google Scholar 

  34. Rosazza JP (ed) (1982) Microbial transformations of bioactive compounds, vol I & II. CRC Press, Boca Raton

    Google Scholar 

  35. Perez S, Barcelo D (2007) Application of advanced MS techniques to analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. Trends Anal Chem 26(6):494–514

    Article  CAS  Google Scholar 

  36. Schulz M, Loffler D, Wagner M, Ternes T (2008) Transformation of the X-ray contrast medium iopromide in soil and biological wastewater treatment. Environ Sci Technol 42(19):7207–7217

    Article  CAS  Google Scholar 

  37. Perez S, Aga D, Barcelo D (2006) Biodegradation of pharmaceuticals in the environment. Top Issues Appl Microbiol Biotechnol 113–144

    Google Scholar 

  38. Farrre ML, Perez S, Kantiani L, Barcelo D (2008) Fate and toxicity of emerging polutants, their metabolites and transformation products in the aquatic environment. Trends Anal Chem 27(11):991–1007

    Article  Google Scholar 

  39. Aga DS (2008) Fate of pharmaceuticals in the environment and in water treatment systems. Advances in the analysis of pharmaceuticals in the aquatic environment. CRC Press, Boca Raton, pp 53–80

    Google Scholar 

  40. European Chemicals Bureau (2003) Technical guidance document on risk assessment. Part II. European Communities, Luxembourg, p 164

    Google Scholar 

  41. Brown JN et al (2007) Variations in bioconcentration of human pharmaceuticals from sewage effluents into fish blood plasma. Environ Toxicol Pharmacol 24:267–274

    Article  CAS  Google Scholar 

  42. Mimeault C et al (2005) The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, Carassisu auratus. Aquat Toxicol 73:44–54

    Article  CAS  Google Scholar 

  43. Zurita JOL et al (2007) Toxicological effects of the lipid regulator gemfibrozil in four aquatic systems. Aquat Toxicol 81:106–115

    Article  CAS  Google Scholar 

  44. Nakamura Y et al (2008) The effects of pH on fluoxetine in Japanese medaka (Oryzias latipes): acute toxicity in fish larvae and bioaccumulation in juvenile fish. Chemosphere 70:865–873

    Article  CAS  Google Scholar 

  45. Schwaiger J et al (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150

    Article  CAS  Google Scholar 

  46. Thibaut R et al (2006) The interference of pharmaceuticals with endogenous and xenobiotic metabolizing enzymes in carp liver: an in-vitro study. Environ Sci Technol 40(16):5154–5160

    Article  CAS  Google Scholar 

  47. Jjemba PK (2002) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93(1–3):267–308

    Article  Google Scholar 

  48. Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy L (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54(6):2288–2297

    Article  CAS  Google Scholar 

  49. Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Zaugg SD, Werner SL, Bossio JP, Benotti MJ (2008) Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ Sci Technol 42(6):1863–1870

    Article  CAS  Google Scholar 

  50. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244

    Article  CAS  Google Scholar 

  51. Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    Article  CAS  Google Scholar 

  52. Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  CAS  Google Scholar 

  53. Lemus JA, Blanco G, Arroyo B, Martinez F, Grande J (2009) Fatal embryo chondral damage associated with fluoroquinolone in eggs of threatened avian scavengers. Environ Pollut 157:2421–2427

    Article  CAS  Google Scholar 

  54. Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam Toxicol 202:53–154

    Google Scholar 

  55. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37(15): 3243–3249

    Article  CAS  Google Scholar 

  56. Oppel J, Broll G, Löffler D, Römbke J, Meller M, Ternes T (2004) Leaching behaviour of pharmaceuticals in soil-testing-systems: a part of an environmental risk assessment for groundwater protection. Sci Total Environ 328:265–273

    Article  CAS  Google Scholar 

  57. Kinney CA, Furlong ET, Zaugg SD, Burkhardt MR, Werner SL, Cahill JD, Jorgensen GR (2006) Survey of organic wastewater contaminants in biosolids destined for land application. Environ Sci Technol 40(23):7207–7215

    Article  CAS  Google Scholar 

  58. Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39:3421–3429

    Article  CAS  Google Scholar 

  59. Reddersen K, Heberer T, Dünnbier U (2002) Identification and significance of phenazone drugs and their metabolism in ground- and drinking water. Chemosphere 9:539–544

    Article  Google Scholar 

  60. Ternes T, Bonerz M, Herrmann N, Teiser B, Andersen HR (2007) Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere 66:894–904

    Article  CAS  Google Scholar 

  61. Topp E, Monteiro SC, Beck A, Coelho BB, Boxall ABA, Duenk PW, Kleywegt S, Lapen DR, Payne M, Sabourin L, Li H, Metcalfe CD (2008) Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Sci Total Environ 396:52–59

    Article  CAS  Google Scholar 

  62. Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 62(2):292–299

    Article  Google Scholar 

  63. Heberer T, Verstraeten IM, Meyer MT, Mechlinski A, Reddersen K (2001) Occurrence and fate of pharmaceuticals during bank filtration- preliminary results from investigations in Germany and the United States. Water Resour 120:4–17

    Google Scholar 

  64. Holm JV, Rügge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grinsted, Denmark). Environ Sci Technol 29(5):1415–1420

    Article  CAS  Google Scholar 

  65. Ternes, T (2001) Pharmaceuticals and metabolites as contaminants of the aquatic environment. In: Daughton CG, Jones-Lepp T (eds) American Chemical Society, Symposium series 791. Washington, DC, pp 39–54

    Google Scholar 

  66. FOCUS (2000) FOCUS groundwater scenarios in the EU plant protection product review process. Report of the FOCUS Groundwater Scenarios Workgroup, EC document reference Sanco/321/2000. p 197

    Google Scholar 

  67. Schneider MK, Stamm C, Fenner K (2007) Selecting scenarios to assess exposure of surface waters to veterinary medicines in Europe. Environ Sci Technol 41:4669–4676

    Article  CAS  Google Scholar 

  68. Blackwell PA, Kay P, Ashauer R, Boxall ABA (2009) Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils. Chemosphere 75(1):13–19

    Article  CAS  Google Scholar 

  69. Boxall ABA, Sinclair CJ, Fenner K, Kolpin DW, Maund S (2004) When synthetic chemicals degrade in the environment. Environ Sci Technol 38(19):369A–375A

    Article  Google Scholar 

  70. Boxall ABA (2009) Transformation products of synthetic chemicals in the environmental. Springer, Germany

    Book  Google Scholar 

  71. Metcalfe C, Boxall A, Fenner K, Kolpin D, Servos M, Silberhorn E, Staveley J (2008) Exposure assessment of veterinary medicines in aquatic systems. CRC Press, Boca Raton

    Google Scholar 

  72. Boxall ABA, Hardy A, Beulke S, Boucard T, Burgin L, Falloon PD, Haygarth PM, Hutchinson T, Kovats RS, Leonardi G, Levy LS, Nichols G, Parsons SA, Potts L, Stone D, Topp E, Turley DB, Walsh K, Wellington EMH, Williams RJ (2009) Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ Health Perspect 117(4):508–514

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon F. Ericson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boxall, A.B.A., Ericson, J.F. (2012). Environmental Fate of Human Pharmaceuticals. In: Brooks, B., Huggett, D. (eds) Human Pharmaceuticals in the Environment. Emerging Topics in Ecotoxicology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3473-3_4

Download citation

Publish with us

Policies and ethics