POF Receiver

Part of the Analog Circuits and Signal Processing book series (ACSP)


In this chapter, the main limitations of the low-cost optical channel, such as attenuation and bandwidth–length product, are introduced. The selected technique to compensate the low speed based on equalization is then analyzed. Thus, a fully integrated front-end receiver implemented in 0.18 lm CMOS technology, using the previously presented TIA and post-amplifier plus an adaptive equalizer and a photodiode monitor, is proposed for fiber-to-the-home (FTTH) applications at 1.25 Gb/s transmission speed on POF.


Microwave Attenuation GaAs Methacrylate PMMA 


  1. Aznar F, Celma S, Calvo B (2010) A 0.18 μm CMOS 1.25 Gbps front-end receiver for low-cost short reach optical communications. In: Proceedings of the 36th European solid-state circuits conference, pp 554–557Google Scholar
  2. Aznar F, Gaberl W, Zimmermann H (2011a) A 0.18 μm CMOS transimpedance amplifier with 26 dB dynamic range at 2.5 Gb/s. Microelectron J 42:1136–1142CrossRefGoogle Scholar
  3. Aznar F, Celma S, Calvo B (2011b) A 0.18 μm CMOS linear-in-dB AGC post-amplifier for optical communications. Microelectron Reliab 51:959–964CrossRefGoogle Scholar
  4. Budin J (1989) Determination of the zero-dispersion shift in single-mode fibers with perturbed index-profile. In: Proceedings of mediterranean electrotechnical conference, pp 583–585Google Scholar
  5. Chen WZ, Huang SH, Wu GW, Liu CC, Huang YT, Chin CF, Chang WH, Juang YZ (2007) A 3.125 Gbps CMOS fully integrated optical receiver with adaptative analog equalizer. In: Proceedings of the 2007 IEEE Asian solid-state circuits conference, pp 396–399Google Scholar
  6. Cheng K-H, Tsai Y-C (2010) A 5 Gb/s inductorless CMOS adaptive equalizer for PCI express generation II applications. IEEE Trans Circuits Syst II Express Briefs 57(5):324–328CrossRefGoogle Scholar
  7. Couch LW (2007) Digital and analog communication systems. Prentice Hall, Upper Saddle RiverGoogle Scholar
  8. Dong Y, Martin K (2010) Analog front-end for a 3 Gb/s POF receiver. In: Proceedigns of the 2010 IEEE international symposium on circuits and systems, pp 197–200Google Scholar
  9. Hall S, Heck H (2009) Advanced signal integrity for high-speed digital designs. Wiley-IEEE Press, HobokenCrossRefGoogle Scholar
  10. Hamamatsu Photonics, Si PIN Photodiode, S5971, S5972, S5973 Series, Solid State Division, http://jp.hamamatsu.com/resources/products/ssd/pdf/s5971_etc_kpin1025e06.pdf
  11. Hermans C, Steyaert M (2007) Broadband opto-electrical receivers in standard CMOS. Analog circuits and signal processing, SpringerGoogle Scholar
  12. IEEE Std. 802.3af-2003Google Scholar
  13. Kawai S (2005) Handbook of optical interconnects. CRC Press, Boca RatonCrossRefGoogle Scholar
  14. Koonen AMJ et al (2011) A look into the future of in-building networks: radmapping the fiber invasion. In: Proceedings of the 20th international conference on plastic optical fibers, pp 41–46Google Scholar
  15. Kuo K-C, Leuciuc A (2001) A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Trans Circuit Syst II: Analog Digital Signal Process 48(10):937–943CrossRefGoogle Scholar
  16. Lin C-W, Liu Y-Z, Hsu KYJ (2004) A low distortion and fast settling time automatic gain control amplifier in CMOS technology. In: Proceedigns of the 2004 IEEE international symposium on circuits and systems, vol 1, pp 541–544Google Scholar
  17. Liu J, Lin X (2004) Equalization in high-speed communications systems. IEEE Circuits Syst Mag 4(2):4–17Google Scholar
  18. Muller P, Leblebici Y (2007) CMOS multichannel single-chip receivers for multi-gigabit optical data communications. Analog circuits and signal processing. Springer, BerlinCrossRefGoogle Scholar
  19. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47(2):617–644CrossRefGoogle Scholar
  20. Otín A (2006) A design strategy for vhf filters with digital programability. PhD thesis, University of Zaragoza, SpainGoogle Scholar
  21. Park S-J, Lee C-H, Jeong K-T, Park H-J, Ahn J-G, Song K-H (2004) Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J Lightwave Technol 22(11):2582–2591CrossRefGoogle Scholar
  22. Polishuk P (2006) Plastic optical fibers branch out. IEEE Commun Mag 44(9):140–148CrossRefGoogle Scholar
  23. Radovanovic S, Annema AJ, Nauta B (2003) Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology. In: IEEE conference on electron devices and solid-state circuits, pp 95–98Google Scholar
  24. Razavi B (2008) Fundamentals of microelectronics. Wiley, HobokenGoogle Scholar
  25. Säckinger E (2005) Broadband circuits for optical fiber communication. Wiley, HobokenCrossRefGoogle Scholar
  26. Schrader JHR, Klumperink EAM, Visschers JL, Nauta B (2005) CMOS transmitter using pulse-width modulation pre-emphasis achieving 33 db loss compensation at 5 Gb/s. Digest of technical papers of 2005 symposium on VLSI circuits, pp 388–391Google Scholar
  27. Shannon CE (1949) Communication in the presence of noise. Proc IRE 37(1):10–21MathSciNetCrossRefGoogle Scholar
  28. Sun R, Park J, O’Mahony F, Yue CP (2006) A tunable passive filter for low-power high-speed equalizers. Symposium on VLSI circuitsGoogle Scholar
  29. Sundermeyer J, Zerna C, Tan J (2009) Integrated analogue adaptive equalizer for gigabit transmission over standard step index plastic optical fibre (SI-POF). In: Proceedings of IEEE LEOS annual meeting conference, pp 195–196Google Scholar
  30. Tavernier F, Steyaert M (2008) Power efficient 4.5 Gbit/s optical receiver in 130 nm CMOS with integrated photodiode. In: Proceedings of the 34th European solid-state circuits conference, pp 162–165Google Scholar
  31. Tavernier F, Steyaert M (2010) A high-speed POF receiver with 1 mm integrated photodiode in 180 nm CMOS. 36th European conference and exhibition on optical communication, pp 1–3Google Scholar
  32. Zerna C, Sundermeyer J, Tan J, Fiederer A, Verwaal N (2009) Adaptive integrated equalizing techniques for SI-POF home networking links. 18th international conference on plastic optical fibersGoogle Scholar
  33. Zhou Y, Wah MCY (2006) A wide band CMOS RF power detector. In: Proceedigns of the 2006 IEEE international symposium on circuits and systems, pp 4228–4231Google Scholar
  34. Ziemann O, Krauser J, Zamzow P, Daum W (2008) POF handbook: optical short range transmission systems. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1. Faculty of SciencesUniversity of ZaragozaZaragozaSpain

Personalised recommendations