Anticancer Effects of Red Beet Pigments



Currently, there is considerable interest in the anticancer effects of red beetroot (Beta vulgaris L.) pigment extract, which is used worldwide as red food color E162 and as a natural colorant in cosmetics and drugs. Of particular significance is its broad spectrum of multi-organ antitumor activity demonstrable in laboratory animal models. Further, this nontoxic plant extract, when used in combination with potent anticancer drugs such as doxorubicin (Adriamycin), has the potential to act synergistically and mitigate treatment-related drug toxicity. Betanin, the betacyanin constituent primarily responsible for red beet color, is an antioxidant with an exceptionally high free radical-scavenging activity and is a modulator of oxidative stress. Research focused on anticancer activities of beetroot extract, in animal models, has unraveled their potential benefits as chemopreventive and chemotherapeutic agents, although further progress is needed on the identification and elucidation of anticancer mechanism(s) of individual active constituent(s) in additional well-designed experimental models and clinical trials, as discussed in this chapter.


Anticancer Effect Grape Seed Extract Pulse Electric Field Treatment Quinone Reductase Beetroot Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are profoundly grateful to Prof. Harukuni Tokuda and his colleagues in Japan as well as all of Prof. Kapadia’s collaborators in the US who contributed to their research on red beetroot extract cited in this review.


  1. Allegra, M., P.G. Furtmuller, W. Jantschko, M. Zederbauer, L. Tesoriere, M. Livrea, and C. Obinger. 2005. Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochemical and Biophysical Research Communications 332: 837–844.Google Scholar
  2. Allegra, M., L. Tesoriere, and M.A. Livrea. 2007. Betanin inhibits the myeloperoxidase/nitrite-induced oxidation of human low-density lipoproteins. Free Radical Research 41: 367–375.Google Scholar
  3. Ames, B., M.K. Shigenaga, and T.M. Hagen. 1993. Oxidants, antioxidants and the degenerative disease of aging. Proceedings of the National Academy of Sciences of the United States of America 90: 7915–7922.Google Scholar
  4. Ames, B.N., L.S. Gold, and W.C. Willet. 1995. The causes and prevention of cancer. Proceedings of the National Academy of Sciences of the United States of America 92: 5258–5265.Google Scholar
  5. Attoe, I., and J.H. von Elbe. 1985. Oxygen involvement in betanin degradation: Effect of antioxidants. Journal of Food Science 50: 106–110.Google Scholar
  6. Azeredo, H.M.C. 2009. Betalains: Properties, sources, applications, and stability – A review. International Journal of Food Science and Technology 44: 2365–2376.Google Scholar
  7. Azeredo, H.M.C., C.R.A. Santos, C.B.K. Mendes, and R.A.M. Iranilde. 2007. Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. American Journal of Food Technology 2: 307–312.Google Scholar
  8. Bobek, P., S. Galbavy, and M. Mariassyova. 2000. The effect of alimentary hypercholesterolemia and chemically induced colon carcinogenesis in rats by dimethylhydrazine. Nahrung 44: 184–187.Google Scholar
  9. Bodley, A., L.F. Liu, M. Israel, R. Seshadri, Y. Koseki, F.C. Giuliani, S. Kirschenbaum, R. Silber, and M. Potmesil. 1989. DNA transisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Research 49: 5969–5978.Google Scholar
  10. Boivin, D., S. Lomy, S. Lord-Dufour, J. Jackson, E. Beauliou, M. Cote, A. Mograbi, S. Barrette, D. Gingas, and R. Beliveau. 2009. Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chemistry 112: 374–380.Google Scholar
  11. Burner, U., P.G. Furtmuller, A.J. Kettle, W.H. Koppenol, and C. Obinger. 2000. Mechanism of reaction of myeloperoxidase with nitrite. Journal of Biological Chemistry 275: 20597–20601.Google Scholar
  12. Cai, Y.Z., M. Sun, and H. Corke. 2003. Antioxidant activity of betalains from plants of Amaranthaceae. Journal of Agricultural and Food Chemistry 51: 2288–2294.Google Scholar
  13. Cai, Y.Z., M. Sun, and H. Corke. 2005. Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science and Technology 16: 370–376.Google Scholar
  14. Carlsen, M.H., B.L. Halvorsen, K. Holte, S.K. Bohn, S. Dragland, L. Sampson, C. Willey, H. Senoo, Y. Umezono, C. Sanada, I. Barikmo, N. Berthe, W.C. Willett, K.M. Phillips, D.R. Jacobs Jr., and R. Blomhoff. 2010. The antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal 9: 3.Google Scholar
  15. Carvalho, C., R.X. Santos, S. Cardoso, S. Correia, and P.J. Oliveira. 2009. Doxorubicin: The good, the bad and the ugly effect. Current Medicinal Chemistry 16: 3267–3285.Google Scholar
  16. Castellanos-Santiago, E., and E.M. Yahia. 2008. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electronspray ionization mass spectrometry. Journal of Agricultural and Food Chemistry 56: 5758–5764.Google Scholar
  17. Chalermchat, Y., P. Dijmek, and M. Fincan. 2004. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment: mathematical modeling of mass transfer. Journal of Food Engineering 64: 146–152.Google Scholar
  18. Chavez-Santoscoy, R.A., J.A. Gutierrez-Uribe, and S.O. Sema-Saldivar. 2009. Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp) juices. Plant Foods for Human Nutrition 64: 146–152.Google Scholar
  19. Cho, E., M.D. Holmes, S.E. Hankinson, and W.C. Willett. 2010. Choline and betaine intake and risk of breast cancer in post-menopausal women. British Journal of Cancer 10: 489–494.Google Scholar
  20. Cormier, F. 1997. Food colorants from plant cell cultures. In Recent advances in phytochemistry, Functionality of phytochemicals, vol. 31, ed. J.T. Romeo and T. Johns, 201–222. New York: Plenum.Google Scholar
  21. Degenhardt, A., and P. Winterhalter. 2001. Isolation of natural pigments by high speed CCC. Journal of Liquid Chromatography and Related Technologies 24: 1745–1764.Google Scholar
  22. Delgado-Vargas, F., A.R. Jimenez, and O. Paredes-Lopez. 2000. Natural pigments: Carotenoids, anthocyanins, and betalains – Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition 40: 173–289.Google Scholar
  23. Detopoulou, P., D.B. Panagiotakos, S. Antonopoulou, C. Pitsavos, and C. Stefanadis. 2008. Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: The ATTICA study. American Journal of Clinical Nutrition 87: 424–430.Google Scholar
  24. Dorai, T., and B.B. Aggarwal. 2004. Role of chemopreventive agents in cancer therapy. Cancer Letters 215: 129–140.Google Scholar
  25. Dornenberg, H., and D. Knorr. 1977. Challenges and opportunities of metabolite production from plant cell and tissue culture. Food Technology 51: 47–54.Google Scholar
  26. Downham, A., and P. Collins. 2000. Coloring our foods in the last and next millennium. International Journal of Food Science and Technology 35: 5–22.Google Scholar
  27. Drdak, M., R.C. Altamirano, A. Rajniakova, P. Simko, J. Karovicova, and D. Benkovska. 1992. Red beet pigment composition. Effects of fermentation by different strains of Saccharomyces cerevisiae. Journal of Food Science 57: 935–936.Google Scholar
  28. Duthie, S.J., A. Ma, M.A. Ross, and A.R. Collins. 1996. Antioxidant supplementation decreases oxidative DNA damage in human lymphocytes. Cancer Research 56: 1291–1295.Google Scholar
  29. Eastwood, M.A., and H. Nyhlin. 1995. Beeturia and colonic oxalic acid. Quarterly Journal of Medicine 88: 711–717.Google Scholar
  30. Edenharder, R., P. Kurz, K. Joh, S. Burgard, and K. Seeger. 1994. In vitro effect of vegetable fruit juices on the mutagenicity of 2-amino-3-methylimidazole[4,5-f]quinoline, 2-amino-3,8-dimethylimide-3-ol[4,5-f]quinoxaline. Food and Chemical Toxicology 32: 443–459.Google Scholar
  31. Edenharder, R., J.W. Sagr, H. Glatt, E. Muckel, and K.L. Platt. 2002. Protection by beverages, fruits, vegetables, herbs, and flavonoids against genotoxicity of 2-acetylaminofluorene and 2-amino-1-methyl-6-phenylimodazole[4,5-b]pyridine (PhIP) in metabolically competent V79 cells. Mutation Research 521: 57–72.Google Scholar
  32. Escribano, J., M.A. Pedreno, F. Garcia-Carmona, and R. Munoz. 1998. Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochemical Analysis 9: 124–127.Google Scholar
  33. Escribano, J., F. Gandia-Herrero, N. Caballero, and M.A. Pedreno. 2002. Subcellular localization of isoenzyme pattern of peroxidase and polyphenoloxidase in beetroot (Beta vulgaris L.). Journal of Agricultural and Food Chemistry 50: 6123–6129.Google Scholar
  34. Foglesong, P.D., C. Rockford, and S. Swink. 1992. Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemotherapy and Pharmacology 30: 123–125.Google Scholar
  35. Fong, M., D. Chen, and C.S. Yang. 2007. Dietary polyphenols may affect DNA methylation. Journal of Nutrition 137: 223S–228S.Google Scholar
  36. Ford-Lloyd, B.V. 1995. Sugar beet and other cultivated beets (Beta vulgaris). In Evaluation of crop plants, 2nd ed, ed. J. Smartt and N.W. Simmonds, 35–40. London: Longman Scientific.Google Scholar
  37. Formari, F.A., J.J. Randolph, J.C. Yalowich, M.K. Ritke, and D.A. Gewirtz. 1994. Interference of doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Molecular Pharmacology 45: 649–656.Google Scholar
  38. Forrai, G., G. Bankovi, and D. Vagujfalvi. 1982. Betaninuria: A genetic trait? Acta Physiologica Academiae Scientiarum Hungaricae 59: 265–282.Google Scholar
  39. Frank, T., F.C. Stintzing, R. Carle, R. Bitsch, and M. Netzel. 2005. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacological Research 52: 290–297.Google Scholar
  40. Gabelman, W.H., I.L. Goldman, and N.D. Breitbach. 2002. High pigment beet. US Patent No 6353156.Google Scholar
  41. Gandia-Herrero, F., J. Escribano, and F. Garcia-Carmona. 2009. The role of phenolic hydroxyl groups in the free radical scavenging activity of betalains. Journal of Natural Products 72: 1142–1146.Google Scholar
  42. Gandia-Herrero, F., J. Escribano, and F. Garcia-Carmona. 2010. Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 232: 449–460.Google Scholar
  43. Gasztonyi, M.N., H. Daood, M.T. Hajos, and P. Biacs. 2001. Composition of red beet (Beta vulgaris var. Conditiva) varieties on the basis of their pigment components. Journal of the Science of Food and Agriculture 81: 932–933.Google Scholar
  44. Gennari, L., M. Felletti, M. Blasa, C. Celeghini, A. Corallini, and P. Ninfali. 2011. Total extract of Beta vulgaris var. Cicla seeds versus its purified phenolic components: Antioxidant activities and antiproliferative effects against colon cancer cells. Phytochemical Analysis 22: 272–279.Google Scholar
  45. Georgiev, V., M. Ilieva, T. Bley, and A. Pavlov. 2010a. Review: Betalain production in plant in vitro systems. Acta Physiologiae Plantarum 30: 581–593.Google Scholar
  46. Georgiev, V.G., J. Weber, E.-M. Kneschke, P.N. Denev, T. Bley, and A.I. Pavlov. 2010b. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods for Human Nutrition 65: 105–111.Google Scholar
  47. Geshner, A., U. Pastorino, S.M. Plummer, and M.M. Manson. 1998. Suppression of tumor development by substances from the diet: Mechanisms and clinical implications. British Journal of Clinical Pharmacology 45: 1–12.Google Scholar
  48. Gliszczynska-Swiglo, A., H. Szymusiak, and P. Malinowska. 2006. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Additives and Contaminants 11: 1079–1087.Google Scholar
  49. Griggs, J.J. 1998. Reducing the toxicity of anticancer therapy: New strategies. Leukemia Research 22(Suppl 1): S27–S33.Google Scholar
  50. Gutteridge, J.M., and B. Halliwell. 2000. Free radicals and antioxidants in the year 2000. A historical look to the future. Annals of the New York Academy of Sciences 899: 136–147.Google Scholar
  51. Haber, G.J., C.T. Tan, and J. Wu. 1979. Stable beet color composition. US Patent No 4132793.Google Scholar
  52. Havlikova, L., K. Mikova, and V. Kyzlink. 1983. Heat stability of betacyanins. Zeitschrift fur Lebensmittel Untersuchung und Forshung 177: 247–250.Google Scholar
  53. Havlikova, L., K. Mikova, and V. Kyzlink. 1985. Red beet pigments as soft drink colorants. Nahrung 29: 723–770.Google Scholar
  54. Henry, B.D. 1996. Natural food colors: Beetroot. In Natural food colorants, 2nd ed, ed. G.A.F. Hendry and J.D. Houghton, 59–64. Glasgow: Blackie Academic Professional.Google Scholar
  55. Herbach, K.M., F.C. Stintzing, and R. Carle. 2006a. Betalain stability and degradation. Structural and chromatic aspects. Journal of Food Science 71: R41–R50.Google Scholar
  56. Herbach, K.M., F.C. Stintz, and R. Carle. 2006b. Stability and color change of thermally treated betanin, phyllocactin and hylocerenin solutions. Journal of Agricultural and Food Chemistry 54: 390–398.Google Scholar
  57. Hunter, C.S., and N.J. Kilby. 1990. Betanin production and release in vitro from suspension cultures of Beta vulgaris. Methods in Molecular Biology 6: 545–554.Google Scholar
  58. IARC. 1997. IARC monographs on the evaluation of carcinogenic risks to humans, Solar and ultraviolet radiation, vol. 55. Geneva: WHO.Google Scholar
  59. Jackman, R.L., and J.L. Smith. 1996. Anthocyanins and betalains. In Natural food colorants, 2nd ed, ed. G.A.F. Hendry and J.D. Houghton, 244–310. Glasgow: Blackie Academic Professional.Google Scholar
  60. Kannan V. 2011. Extraction of bioactive compounds from whole red cabbage and beetroot using pulsed electric fields and evaluation of their functionality. Master of Science thesis in food science and technology, University of Nebraska, Lincoln. Accessed 4 Feb 2011.
  61. Kanner, J., S. Harel, and R. Granit. 2001. Betalains – A new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry 49: 5178–5185.Google Scholar
  62. Kapadia, G.J., H. Tokuda, T. Konoshima, M. Takasaki, and H. Nishino. 2001. Inhibitory effect of synthetic and natural colorants on carcinogenesis. US Patent No 6284224.Google Scholar
  63. Kapadia, G.J., H. Tokuda, T. Konoshima, and H. Nishino. 1996. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Letters 100: 211–214.Google Scholar
  64. Kapadia, G.J., V. Balasubramanian, H. Tokuda, A. Iwashima, and H. Nishino. 1997. Inhibition of 12-O-tetradecanoylphorbol-13-acetate induced Epstein-Barr virus antigen activation by natural colorants. Cancer Letters 115: 173–178.Google Scholar
  65. Kapadia, G.J., H. Tokuda, R. Sridhar, V. Balasubramanian, J. Takayasu, P. Bu, F. Enjo, M. Takasaki, T. Kinoshima, and H. Nishino. 1998. Cancer chemopreventive activity of synthetic colors used in foods, pharmaceuticals and cosmetic preparations. Cancer Letters 129: 87–95.Google Scholar
  66. Kapadia, G.J., M.A. Azuine, R. Sridhar, Y. Okuda, A. Tsuruta, E. Ichiishi, T. Mukainake, M. Takasaki, N.H. Konoshima, and H. Tokuda. 2003. Chemoprevention of DMBA-induced UV-B promoted, NORI-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacological Research 47: 141–148.Google Scholar
  67. Kapadia, G.J., M.A. Azuine, T. Konoshima, M. Takasaki, F. Enjo, H. Nishino, and H. Tokuda. 2005. Chemopreventive activity of the natural colorant, betanin against advanced glycation endproducts induced carcinogenesis. In 46th annual meeting of the American Society of Pharmacognosy, Corvallis, Abstr No P241.Google Scholar
  68. Kapadia, G.J., M.A. Azuine, G.S. Rao, T. Arai, A. Iida, and H. Tokuda. 2011a. Cytotoxic effect of the red beetroot (Beta vulgaris L.) extract compared to doxorubicin (Adriamycin) in the human prostate (PC-3) and breast (MCF-7) cancer cell lines. Anticancer Agents in Medicinal Chemistry 11: 280–284.Google Scholar
  69. Kapadia, G.J., G.S. Rao, A. Iida, N. Suzuki, and H. Tokuda. 2011b. Synergistic cytotoxic effect of red beetroot (Beta vulgaris L.) food colorant E162 with anticancer drug doxorubicin (Adriamycin) against human prostate, breast and pancreatic tumor cells. In 52nd annual meeting of the American Society of Pharmacognosy, San Diego, Abstr No P241.Google Scholar
  70. Kelloff, G.J., J.A. Crowell, V.E. Steele, R.A. Lubert, W.A. Malone, C.W. Boone, L. Kopelovich, E.T. Hawk, R. Lieberman, A. Lawrence, I. Ali, J.L. Viner, and C.C. Sigman. 2000. Progress in chemoprevention: Development of diet-derived chemopreventive agents. Journal of Nutrition 130((2S Suppl)): 467S–471S.Google Scholar
  71. Klewicka, E., A. Nowak, Z. Zdunczyk, B. Cukrowska, and J. Blasiak. 2010. Protective effect of lactofermented beetroot juice against aberrant crypt foci and genotoxicity of fecal water in rats. Experimental and Toxicologic Pathology 63.
  72. Konoshima, T., and M. Takasaki. 2003. Anticarcinogenic activities of natural pigments from beetroot and saffron. Foods and Food Ingredients Journal of Japan 208: 615–622.Google Scholar
  73. Krantz, C., M. Monier, and B. Wahlstrom. 1980. Absorption, excretion, metabolism and cardiovascular effects of beetroot extract in the rat. Food and Cosmetics Toxicology 18: 363–366.Google Scholar
  74. Kriznik, B., and D. Pavokovic. 2010. Enhancement of betanin yield in transformed sugar beet (Beta vulgaris L.). Acta Botanica Croatia 69: 173–182.Google Scholar
  75. Kujala, T.S., J.M. Loponen, K.D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48: 5338–5342.Google Scholar
  76. Kujala, T., K. Klika, V. Ovcharenko, J. Laponen, M. Vienola, and K. Pihlaja. 2001a. 5,5′-6,6′-tetrahydroxy-3,3′-biindolyl from beetroot (Beta vulgaris) peel extract. Zeitschrift fur Naturforschung C 56: 714–718.Google Scholar
  77. Kujala, T., J. Laponen, and K. Pihlaja. 2001b. Betalains and phenolics in red beetroot (Beta vulgaris) peel extract. Zeitschrift fur Naturforschung C 56: 343–348.Google Scholar
  78. Kujala, T.S., M.S. Vienola, K.D. Klika, J.M. Loponen, and K. Pihlaja. 2002. Betalain and phenolic composition of four beetroot (Beta vulgaris) cultivars. European Food Research and Technology 214: 505–510.Google Scholar
  79. Kujawska, M., E. Ignatowicz, M. Murias, M. Ewertowska, K. Mikolajczyk, and J. Jodynis-Liebert. 2009. Protective effect of red beet against carbon tetrachloride- and N-nirosodiethylamine-induced oxidative stress in rats. Journal of Agricultural and Food Chemistry 57: 2570–2575.Google Scholar
  80. Kuramoto, Y., K. Yamada, O. Tsuruta, and M. Sugano. 1996. Effect of natural food colorings on immunoglobulin production in vitro by rat spleen lymphocytes. Bioscience, Biotechnology, and Biochemistry 60: 1712–1713.Google Scholar
  81. Langdon, S.P. (ed.). 2003. Cancer cell culture: Methods and protocols. New York: Humana Press.Google Scholar
  82. Lechner, J.F., L.-S. Wang, C.M. Rocha, B. Larue, C. Henry, C.M. McIntyre, K.M. Riedl, S.J. Schwartz, and G.D. Stoner. 2010. Drinking water with red beetroot food color antagonizes esophageal carcinogenesis in N-nitrosomethylbenzylamine-treated rats. Journal of Medicinal Food 13: 1–7.Google Scholar
  83. Lee, C.Y., and N.L. Smith. 1979. Blanching effect on polyphenoloxidase activity in table beets. Journal of Food Science 44: 82–86.Google Scholar
  84. Lee, J., N. Koo, and D.B. Min. 2004. Reactive oxygen species, aging and antioxidant neutraceuticals. Comprehensive Reviews in Food Science and Food Safety 3: 21–33.Google Scholar
  85. Lee, C.-H., M. Wattasinghe, B.W. Bolling, L.-L. Ji, and K.L. Parkin. 2005. Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutrition and Cancer 53: 91–103.Google Scholar
  86. Lee, J.H., C.W. Son, M.Y. Kim, M.H. Kim, H.R. Kim, E.S. Kwak, S. Kim, and M.R. Kim. 2009. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6 J mice fed high fat high cholesterol diet. Nutrition Research and Practice 3: 114–121.Google Scholar
  87. Lee, J.E., E. Giovannucci, C.S. Fuchs, W.C. Willett, S.H. Zeisel, and E. Cho. 2010. Choline and betaine intake and the risk of colorectal cancer in men. Cancer Epidemiology, Biomarkers and Prevention 19: 884–887.Google Scholar
  88. Ley, R.D., and V.E. Reeve. 1997. Chemoprevention of ultraviolet radiation-induced skin cancer. Environmental Health Perspectives 105(Suppl 4): 981–984.Google Scholar
  89. Livrea, M.A., and L. Tesoriere. 2006. Health benefits and bioactive components of the fruits from Opunita ficus-indica [L.] Mill. Journal of the Professional Association for Cactus Development 2006: 73–90.Google Scholar
  90. Lopez, N., E. Puertolas, S. Condon, J. Raso, and I. Alvarez. 2009. Enhancement of the extraction of betaine from red beetroot by pulsed electric fields. Journal of Food Engineering 90: 60–66.Google Scholar
  91. Lu, X., Y. Wang, and Z. Zhang. 2009. Radioprotective activity of betalains from red beets in mice exposed to gamma irradiation. European Journal of Pharmacology 615: 223–227.Google Scholar
  92. Lukowicz, J., G. Peszynska-Sularz, A. Cieslak, A. Piasek, and W. Popadiuk. 2010. Dietary intervention with red beet juice during cancer chemotherapy with doxorubicin as means of combating toxic side effects resulting from oxidative stress. Accessed 9 Dec 2010.
  93. Minotti, G., P. Menna, E. Salvatorelli, and L. Gianni. 2004. Anthracylines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews 56: 185–229.Google Scholar
  94. Mitchell, S.C. 2001. Food idiosyncrasies. Beetroot and asparagus. Drug Metabolism and Disposition 29: 539–543.Google Scholar
  95. Moreno, D.A., C. Garcia-Veguera, J.I. Gil, and A. Gil-Izuierdo. 2008. Betalains in the era of global agri-food science, technology and nutritional health. Phytochemistry Reviews 7: 261–280.Google Scholar
  96. Nayak, C.A., S. Chethana, N.K. Rastogi, and K. Raghavarao. 2006. Enhanced mass transfer during solid-liquid extraction of gamma-radiated red beetroot. Radiation Physics and Chemistry 75: 173–178.Google Scholar
  97. Netzel, M., F.C. Stintzing, D. Quaas, G. Straub, R. Carle, R. Bitsch, I. Bitsch, and T. Frank. 2005. Renal excretion of antioxidative constituents from red beet in humans. Food Research International 38: 1051–1058.Google Scholar
  98. Ninfali, P., M. Bacchiocca, A. Antonelli, E. Biagiotti, A.M. Gioacchino, G. Piccoli, V. Stocchi, and G. Brandi. 2007. Characterization and biological activity of main flavonoids from Swiss chard (Beta vulgaris subspecies cycla). Phytomedicine 14: 216–221.Google Scholar
  99. Nollet, L.M.L. 2004. Handbook of food analysis: Physical characterization and nutrient analysis, 852. Boca Raton: CRC Press.Google Scholar
  100. Nottingham, S. 2004. Beetroot e-book- 2004. The Times, London. Accessed 28 Jan 2011.
  101. O’Callaghan, M.C. 1996. Biotechnology in natural food colours: The role of bioprocessing. In Natural food colorants, 2nd ed, ed. G.A.F. Hendry and J.D. Houghton, 80–111. Glasgow: Blackie Academic Professional.Google Scholar
  102. Pai, S.R., and P. D’Mello. 2004. Stability evaluation of beetroot colour in various pharmaceutical matrices. Indian Journal of Pharmaceutical Sciences 66: 696–699.Google Scholar
  103. Paluszczak, J., V. Krajka-Kuzniak, and W. Baer-Dobowska. 2010. The effect of dietary polyphenols on the epigenetic regulation of gene expression on MCF7 breast cancer cells. Toxicology Letters 192: 119–125.Google Scholar
  104. Pan, M.H., and C.T. Ho. 2008. Chemopreventive effects of natural dietary compounds on cancer development. Chemical Society Reviews 37: 2558–2574.Google Scholar
  105. Patkai, G.Y., J. Bara, and I. Varsanyi. 1997. Decomposition of anticarcinogen factors of the beetroot during juice and nectar production. Cancer Letters 114: 105–106.Google Scholar
  106. Pavlov, A., P. Kovatcheva, D. Tuneva, M. Ilieva, and T. Bley. 2005. Radical scavenging activity and stability of betalains from Beta vulgaris hairy root culture in simulated conditions of human gastrointestinal tract. Plant Foods for Human Nutrition 60: 43–47.Google Scholar
  107. Pavokovic, D., G. Rusak, V. Besendorfer, and M. Krsnik-Rasol. 2009. Light-dependent betanin production by transformed cells of sugar beet. Food Technology and Biotechnology 47: 153–158.Google Scholar
  108. Pedreno, M.A., and J. Escribano. 2000. Studying the oxidation and the antiradical activity of betalain from beet root. Journal of Biological Education 35: 49–51.Google Scholar
  109. Pedreno, M.A., and J. Escribano. 2001. Correlation between antiradical activity and stability of betanine from Beta vulgaris L. roots under different pH, temperature and light conditions. Journal of the Science of Food and Agriculture 81: 627–631.Google Scholar
  110. Pigram, W.J., W. Fuller, and L.D. Hamilton. 1972. Stereochemistry of interactions: Interaction of daunomycin with DNA. Nature: New Biology 235: 17–19.Google Scholar
  111. Platt, K.L., R. Edenharder, S. Aberhold, S. Muckel, and H. Glatt. 2010. Fruits and vegetables protect against genotoxicity of heterocyclic aromatic amines activated by human xenobiotic-metabolizing enzymes expressed in immortal mammalian cells. Mutation Research 703: 90–98.Google Scholar
  112. Pogribny, I.P., S.A. Ross, C. Wise, M. Pogribna, E.A. Jones, V.P. Tryndyak, S.J. James, Y.P. Dragan, and L.A. Poirier. 2006. Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutation Research 593: 80–87.Google Scholar
  113. Prahoveanu, E., V. Easanu, G. Anton, and S. Frunzulica. 1986. Prophylactic effect of a Beta vulgaris extract on experimental influenza infection in mice. Virologie 37: 121–123.Google Scholar
  114. Pucher, G.W., L.C. Curtis, and H.B. Vickery. 1938. The red pigment of the root of the beet (Beta vulgaris) 1. The preparation of betanin. Journal of Biological Chemistry 123: 61–70.Google Scholar
  115. Pyo, Y.-H., T.-C. Lee, L. Logendra, and R.T. Rosen. 2004. Antioxidant activity of phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chemistry 85: 19–26.Google Scholar
  116. Raja, P.B., and M.G. Sethuraman. 2008. Natural products as corrosion inhibitor for metals in corrosive media – A review. Materials Science 62: 113–116.Google Scholar
  117. Rakin, M., M. Vukasinovic, S. Silver-Marinkovic, and M. Maksimovic. 2007. Contribution of lactic acid fermentation to improve nutritive quality of vegetable juices enriched with brewer’s yeast autolysate. Food Chemistry 100: 599–602Google Scholar
  118. Ramarathnam, N., H. Ochi, and M. Takeuchi. 1997. Antioxidant defense system in vegetable extracts. In Natural antioxidants: Chemistry, health effects, and applications, ed. F. Shahidi, 76–87. Champaign: AOCS Press.Google Scholar
  119. Reddy, M.K., R.L. Alexander-Lindo, and M.G. Nair. 2005. Relative inhibition of lipid peroxidation, cyclogenase enzymes and human tumor proliferation by natural food colors. Journal of Agricultural and Food Chemistry 53: 9268–9273.Google Scholar
  120. Riboli, E., and T. Norat. 2003. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. American Journal of Clinical Nutrition 78: 559S–569S.Google Scholar
  121. Roberts, M.F., D. Strack, and M. Wink. 2010. Biosynthesis of alkaloids and betalains. In Annual plant reviews, Biochemistry of plant secondary metabolites, vol. 40, 2nd ed, ed. M. Wink, 20–91. Chichester: Wiley. Accessed 20 Apr 2011.Google Scholar
  122. Robinson, A.M., and R. Robinson. 1932. Synthetic experiments on the nature of betanin and related nitrogenous anthocyanins. Part I. Journal of the Chemical Society 1932: 1439–1445.Google Scholar
  123. Saldanha, P.H. 1962. On the genetics of betanin excretion. Journal of Heredity 53: 296–298.Google Scholar
  124. Saldanha, P.H., L.E. Magalhaes, and W. Horta. 1960. Race differences in the ability to excrete beetroot pigment (betanin). Nature 187: 806–807.Google Scholar
  125. Schliemann, W., N. Kobayashi, and D. Strack. 1999. The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiology 119: 1217–1232.Google Scholar
  126. Schwartz, S.J., J.H. von Elbe, M.W. Pariza, T. Goldsworthy, and H.C. Pitot. 1983. Inability of red beet betalain pigments to initiate or promote hepatocarcinogenesis. Food and Chemical Toxicology 21: 531–535.Google Scholar
  127. Selvi, J.A., S. Rajendran, V.G. Sri, A.J. Amaraj, and B. Narayanaswamy. 2009. Corrosion inhibition by beetroot extract. Portugaliae Electrochimica Acta 27: 1–11.Google Scholar
  128. Sharma, G., A.K. Tyagi, R.P. Singh, D.C. Chan, and R. Agrawal. 2004. Synergistic anti-cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Research and Treatment 85: 1–12.Google Scholar
  129. Siriwarchana, N., F. Shahidi, and Y. Jeon. 2006. Potential antioxidative effects of cactus pear fruit (Opuntia ficus-indica) extract of radical scavenging and DNA damage reduction in human peripheral lymphocytes. Journal of Food Lipids 13: 445–458.Google Scholar
  130. Sivakumar, V., J.L. Anna, J. Vijayeeswarri, and G. Swaminathan. 2009. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry 16: 782–789.Google Scholar
  131. Song, W., C.M. Derito, X. Liu, X. He, M. Dong, and R.H. Liu. 2010. Cellular antioxidant activity of common vegetables. Journal of Agricultural and Food Chemistry 58: 6621–6629.Google Scholar
  132. Sporn, M.B., and N. Suh. 2000. Chemoprevention of cancer. Carcinogenesis 21: 525–530.Google Scholar
  133. Sreekanth, D., M.K. Arunasree, and K.R. Roy. 2007. Betanin, a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia cell line-K562. Phytomedicine 14: 739–746.Google Scholar
  134. Stanner, S.A., J. Hughes, C.N. Kelly, and J. Buttriss. 2004. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutrition 7: 407–422.Google Scholar
  135. Staruchova, M., K. Volkova, A. Lajdova, C. Mislanova, A. Collins, L. Wsolova, L. Staruch, and M. Dusinska. 2006. Importance of diet in protection against oxidative damage. Neuro Endocrinology Letters 27(Suppl 2): 112–115.Google Scholar
  136. Stintzing, F.C., and R. Carle. 2004. Functional properties of anthocyanins and betalains in plants and human nutrition. Trends in Food Science and Technology 15: 19–38.Google Scholar
  137. Stintzing, F.C., and R. Carle. 2007. Betalains: Emerging prospects for food scientists. Trends in Food Science and Technology 18: 514–525.Google Scholar
  138. Stintzing, F.C., and R. Carle. 2008a. Analysis of betalains. In Food colorants: Chemical and functional properties, ed. C. Socaciu, 507–520. Boca Raton: CRC Press.Google Scholar
  139. Stintzing, F.C., and R. Carle. 2008b. N-Heterocyclic pigments: Betalains. In Food colorants: Chemical and functional properties, ed. C. Socaciu, 87–93. Boca Raton: CRC Press.Google Scholar
  140. Strack, D., T. Vogt, and W. Schliemann. 2003. Recent advances in betalain research. Phytochemistry 62: 247–269.Google Scholar
  141. Talalay, P. 1989. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Advances in Enzyme Regulation 28: 237–250.Google Scholar
  142. Tesoriere, L., D. Butera, D. D’Arpa, F. DiGuadio, M. Allegra, C. Gentile, and M.A. Livrea. 2003. Increased resistance to oxidation of betalain-induced human low density lipoproteins. Free Radical Research 37: 689–696.Google Scholar
  143. Tesoriere, L., M. Allegra, D. Butera, and M. Livrea. 2004. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects in humans. American Journal of Clinical Nutrition 80: 941–945.Google Scholar
  144. Tesoriere, L., M. Fazzari, F. Angileri, C. Gentile, and M.A. Livrea. 2008. In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins, and oxidation potential of food digesta. Journal of Agricultural and Food Chemistry 56: 10487–10492.Google Scholar
  145. Tesoriere, L., M. Allegra, C. Gentile, and M.A. Livrea. 2009. Betacyanins as phenol antioxidants. Chemistry and mechanistic aspects of the lipoperoxyl radical-scavenging activity in solution and liposomes. Free Radical Research 43: 706–717.Google Scholar
  146. Tokuda, H., and A. Iida. 2006. Chemopreventive activity of natural compounds against advanced glycation endproduct induced carcinogenesis. In 5th AACR international conference in cancer prevention research, Boston, Abstr No A59.Google Scholar
  147. Vali, L., H. Feber, E. Stefanovits-Banyai, E. Sardi, A. Lugasi, K. Szentmihalyi, and A. Blazovics. 2006. Duodenum protecting effects of table beet (Beta vulgaris L. ssp. esculata var. rubra) during hepatic eschemia-reperfusion. Acta Alimentaria 35: 445–453.Google Scholar
  148. Vali, L., E. Stefanovits-Banyai, K. Szentmihalyi, H. Febel, E. Sardi, A. Lugasi, I. Kocsis, and A. Blazovics. 2007. Liver-protecting effects of table beet (Beta vulgaris var. rubra) during ischemia-reperfusion. Nutrition 23: 172–178.Google Scholar
  149. Vinson, J.A., Y. Hao, C. Su, and L. Zubic. 1998. Phenol antioxidant quantity and quality in foods: Vegetables. Journal of Agricultural and Food Chemistry 46: 3630–3634.Google Scholar
  150. Vitti, M.C.D., L.K. Yamamoto, F.F. Sasaki, J.S. Aguila, R.A. Kluge, and A.P. Jacomimo. 2005. Quality of minimally processed beet roots stored in different temperatures. Brazillian Archives of Biology and Technology 48: 503–510.Google Scholar
  151. von Elbe, JH. 2001. Betalains: Spectrophotometric determination of betacyanins and betaxanthins: In Current Protocols in Food Analytical Chemistry, F3.1.1-F3.1.7, New York: Wiley.Google Scholar
  152. von Elbe, J.H., and S.J. Schwartz. 1981. Absence of mutagenic activity and a short-term study of beet pigments as food colorants. Archives of Toxicology 49: 93–98.Google Scholar
  153. von Elbe, J.H., I.-Y. Maing, and C.H. Amudson. 1974. Color stability of betanin. Journal of Food Science 39: 334–337.Google Scholar
  154. Watson, W.C., R.G. Luke, and J.A. Inall. 1963. Beeturia: Its incidence and a clue to its mechanism. British Medical Journal 2: 971–973.Google Scholar
  155. Watts, A.R., M.S. Lennard, S.L. Mason, G.T. Tucker, and H.F. Woods. 1993. Beeturia and the biological fate of beetroot pigments. Pharmacogenetics 3: 302–311.Google Scholar
  156. Wettasinghe, M.B., B. Bolling, L. Plhak, H. Xiao, and K. Parkin. 2002. Phase II enzyme-inducing antioxidant activities of beetroot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. Journal of Agricultural and Food Chemistry 50: 6704–6709.Google Scholar
  157. Winkler, C., B. Wirleitner, K. Schroecksnadel, H. Schennach, and D. Fuchs. 2005. In vitro effects of beetroot juice on stimulated and unstimulated peripheral blood mononuclear cells. American Journal of Biochemistry and Biotechnology 1: 180–185.Google Scholar
  158. Wyler, H., U. Meuer, J. Bauer, and L. Stravs-Mombelli. 1984. Cyclodopa glucoside (= (2 S)-5-(β-D-glucopyranosyloxy)-6-hydroxyindoline-2-carboxylic acid) and its occurrence in red beet (Beta vulgaris var. rubra L.). Helvetica Chimica Acta 67: 1348–1355.Google Scholar
  159. Xu, X., M.D. Gammon, S.H. Zeisel, P.T. Bradshaw, J.G. Wetmur, S.L. Teitelbaum, A.I. Neugut, R.M. Santella, and J. Chen. 2009. High intakes of choline and betaine reduce breast cancer mortality in a population-based study. The FASEB Journal 23: 4022–4028.Google Scholar
  160. Yamagishi, S., K. Nakamura, H. Inoue, S. Kikuchi, and M. Takeuchi. 2005. Possible participation of advanced glycation endproducts in the pathogenesis of colorectal cancer in diabetic patients. Medical Hypotheses 64: 1208–1210.Google Scholar
  161. Zielinska-Przyjemska, M., A. Olejnik, A. Dobrowolska-Zachwieja, and W. Grajek. 2009. In vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals. Phytotherapy Research 23: 49–55.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, College of PharmacyHoward UniversityWashingtonUSA
  2. 2.Global Technology Resource CenterStreamwoodUSA

Personalised recommendations