Advertisement

Red Beet: An Overview

  • Bhagyalakshmi Neelwarne
  • Sowbhagya B. Halagur
Chapter

Abstract

Research on red beet has increased rapidly in the last decade owing to the presence of brightly colored water-soluble pigments complemented by its richness of antioxidants, neuro-stimulators and strong anti-hypertensive and anti-cancer effects. Apart from their increasing traditional applications in food and pharmaceutical products, betalains have found newer applications such as for developing solar cells and anti-ageing formulations. While the visible presence of vacuolar pigments has made the tissues of red beet a model system for studying several vacuole-related cellular physiologies, the material is ideal for developing color-extraction techniques and related engineering aspects. Although its derivative variety – the sugar beet – has attracted great attention because of its capacity to accumulate high sugar content, similar emphasis has never been placed on red beet. The modern knowledge and molecular techniques of genomics, proteomics and metabolomics have not been applied efficiently for improving existing nutraceuticals within the plant or for identifying hitherto unexplored biomolecules. The present chapter provides an overview of recent biotechnological research developments on red beet, highlighting the important research areas worth addressing in the near future.

Keywords

Sugar Beet Hairy Root Cytoplasmic Male Sterility Glycine Betaine Pulse Electric Field Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahluwalia A. 2011. Health benefits of red beet. http://www.livestrong.com/article/110787-benefits-beet-juice/. Accessed 25 Nov 2011.
  2. Akita, T., Y. Hina, and T. Nishi. 2000. Production of betacyanins by a cell suspension culture of table beet (Beta vulgaris L.). Bioscience, Biotechnology, and Biochemistry 64: 1807–1812.Google Scholar
  3. Akita, T., Y. Hina, and T. Nishi. 2001. Effect of zinc deficiency on betacyanin production in a cell suspension culture of table beet (Beta vulgaris L.). Bioscience, Biotechnology, and Biochemistry 65: 962–965.Google Scholar
  4. Akita, T., Y. Hina, and T. Nishi. 2002. New medium composition for high betacyanin production by a cell suspension culture of table beet (Beta vulgaris L.). Bioscience, Biotechnology, and Biochemistry 66: 902–905.Google Scholar
  5. Alfthan, G., K. Tapani, K. Nissinen, et al. 2004. The effect of low doses of betaine on plasma homocysteine in healthy volunteers. The British Journal of Nutrition 92: 665–670.Google Scholar
  6. Armuganathan, K., and E.D. Earle. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208–218.Google Scholar
  7. Arnaud, J.F., F. Viard, M. Delesclure, and J. Cuguen. 2003. Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): Consequences for the release of genetically modified crop species with weedy lineages. Proceedings of the Royal Society of London Series B-Biological Science 270: 1565–1571.Google Scholar
  8. Asensi-Fabado, M.A., and S. Munne-Bosch. 2010. Vitamins in plants: Occurrence, biosynthesis and antioxidant function. Trends in Plant Science 15: 582–592.Google Scholar
  9. Atkinson, W., J. Elmslie, M. Lever, S.T. Chambers, and P.M. George. 2008. Dietary and supplementary betaine: Acute effects on plasma betaine and homocysteine concentrations under standard and postmethionine load conditions in healthy male subjects. American Journal of Clinical Nutrition 87: 577.Google Scholar
  10. Avérous, L. 2004. Biodegradable multiphase systems based on plasticized starch: A review. Journal of Macromolecular Science, Part C-Polymer Reviews 44: 231–274.Google Scholar
  11. Azeredo, H.M.C. 2009. Betalains: Properties, sources, applications, and stability – A review. International Journal of Food Science and Technology 44: 2365–2376.Google Scholar
  12. Azeredo, H.M.C., C.R.A. Santos, C.B.K. Mendes, and R.A.M. Iranilde. 2007. Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. American Journal of Food Technology 2: 307–312.Google Scholar
  13. Baar, A., W. Gebel, U. Imhof, and H. Mihalik. 1997. Process for producing mouldings with a barrier layer made of biodegradable material, and mouldings produced according to this process. WO Patent n 97/10293.Google Scholar
  14. Bandyopadhyay, M., R. Chakraborty, and U. Raychaudhuri. 2008. Effect of beet and honey on quality improvement and carotene retention in a carrot fortified milk product. Innovative Food Science and Emerging Technologies 9: 9–17.Google Scholar
  15. Bartsch, D., M. Lehnen, J. Clegg, S.I. Pohl-orf, and N.C. Eustrand. 1999. Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Molecular Ecology 8: 1733–1741.Google Scholar
  16. Bell, E.A. 2003. Nonprotein amino acids of plants: Significance in medicine, nutrition, and agriculture. Journal of Agricultural and Food Chemistry 51: 2854–2865.Google Scholar
  17. Bennett, M.D., and J.B. Smith. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Society of London Series 274: 227–274.Google Scholar
  18. Bentley, R., and R. Meganathan. 1981. Geosmin and methylisoborneol biosynthesis in Streptomycetes: Evidence for an isoprenoid pathway and the absence in non-differentiating isolates. FEBS Letters 125: 220–222.Google Scholar
  19. Berghofer, E., B. Grzeskowiak, N. Mundlinger, G. Schleining, and H. Zenz. 1992. Biologisch abbaubares Verpackungs- und/oder Hüll-Material und Verfahren zuseiner Herstellung. EP Patent n 0,506,650.Google Scholar
  20. Buruleanu, L., I. Manea, M.G. Bratu, D. Avram, and C.L. Nicole. 2009. Effects of prebiotics on the quality of lactic acid fermented vegetable juices. Ovidius University Annals of Chemistry 20: 102–107.Google Scholar
  21. Cai, Y., M. Sun, and H. Corke. 1998. Colorant properties and stability of Amaranthus betacyanin pigments. Journal of Agricultural and Food Chemistry 46: 4491–4495.Google Scholar
  22. Cai, Y.Z., M. Sun, and H. Corke. 2005. Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends in Food Science and Technology 16: 370–376.Google Scholar
  23. Chalermchat, Y., P. Dijmek, and M. Fincan. 2004. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment: Mathematical modeling of mass transfer. Journal of Food Engineering 64: 229–236.Google Scholar
  24. Cho, E., M. Holmes, S. Hankinson, and W. Willett. 2010. Choline and betaine intake and risk of breast cancer among post-menopausal women. British Journal of Cancer 102: 489–494.Google Scholar
  25. Cormier, F. 1997. Food colorants from plant cell cultures. In Recent advances in phytochemistry, Functionality of phytochemicals, vol. 31, ed. J.T. Romeo and T. Johns, 201–222. New York: Plenum Press.Google Scholar
  26. Delgado-Vargas, F., A. Jiménez, and O. Paredes-López. 2000. Natural pigments: Carotenoids, anthocyanins, and betalains – Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition 40: 173–289.Google Scholar
  27. Desel, C., R. Jansen, D.D. Gue, and T. Schmidt. 2002. Painting of parental chromatin in Beta hybrids by multicolor fluorescent in situ hybridization. Ann Bot London 89: 171–181.Google Scholar
  28. Dinand, E., H. Chanzy, and M. Vignon. 1996. Parenchymal cell cellulose from sugar beet pulp: Preparation and properties. Cellulose 3: 183–188.Google Scholar
  29. Dinand, E., H. Chanzy, and R. Vignon. 1999. Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13: 275–283.Google Scholar
  30. Dionigi, C.P., D.F. Millie, A.M. Spanier, and P.B. Johnsen. 1992. Spore and geosmin production by Streptomyces tendae on several media. Journal of Agricultural and Food Chemistry 40: 122–125.Google Scholar
  31. Drdák, M., R.C. Altamirano, A. Rajmiankova, P. Simko, J. Karovicova, and D. Benkovska. 1992. Red beet pigment composition effect of fermentation by different strains of Saccharomyces cerevisiae. Journal of Food Science 57: 935–936.Google Scholar
  32. Dronnet, V., M. Axelos, C. Renard, and J.F. Thibault. 1998. Improvement of the binding capacity of metal cations by sugar-beet pulp. 2. Binding of divalent metal cations by modified sugar-beet pulp. Carbohydrate Polymers 35: 239–247.Google Scholar
  33. Dudareva, N.A., E.V. Kiseleva, A.E. Boyarintseva, A.G. Maystrenko, N.B. Khristolyubova, and R.I. Salganik. 1988. Structure of the mitochondrial genome of Beta vulgaris L. TAG Theoretical and Applied Genetics 76: 753–759.Google Scholar
  34. Dumbravă, A., I. Enachea, C.I. Opreac, A. Georgescu, and M.A. Gîrţu. 2012. Toward a more efficient utilisation of betalains as pigments for dye-sensitized solar cells. Digest Journal of Nanomaterials and Biostructures 7: 339–351.Google Scholar
  35. Eagen, K.A., and I.L. Goldman. 1996. Assessment of RAPD marker frequencies over cycles of recurrent selection for pigment concentration and percent solids in red beet (Beta vulgaris L.). Molecular Breeding 2: 107–115.Google Scholar
  36. Eastwood, M., and H. Nyhlin. 1995. Beeturia and colonic oxalic acid. Quarterly Journal of Medicine 88: 711.Google Scholar
  37. El-Tantawy, E.M., and G.S.A. Eisa. 2009. Growth, yield, anatomical traits and betanine pigment content of table beet plants as affected by nitrogen sources and spraying of some nutrients. Journal of Applied Sciences Research 5: 1173–1184.Google Scholar
  38. Escribano, J., F. Gandía-Herrero, N. Caballero, and M.A. Pedreño. 2002. Subcellular localization and isoenzyme pattern of peroxidase and polyphenol oxidase in beet root (Beta vulgaris L.). Journal of Agricultural and Food Chemistry 50: 6123–6129.Google Scholar
  39. Figiel, A. 2010. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering 98: 461–470.Google Scholar
  40. Fincan, M., F. Devito, and P. Dijmek. 2004. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment. Journal of Food Engineering 64: 381–388.Google Scholar
  41. Fiserova, M., J. Gigac, and R. Butas. 2007. Influence of sugar beet pulp on bond strength and structure of paper. Wood Research 52: 59–74.Google Scholar
  42. Fissore, E.N., N.M.A. Ponce, P.M. de Escalada, C.A. Stortzs, A.M. Rojas, and L.N. Gerschenson. 2010. Characterization of acid-extracted pectin-enriched products obtained from red beet (Beta vulgaris L. var. conditiva) and butternut (Cucurbita moschata Duch ex Poiret). Journal of Agricultural and Food Chemistry 58: 3793–3800.Google Scholar
  43. Fissore, E.N., A.M. Rojas, and L.N. Gerschenson. 2012. Rheological performance of pectin-enriched products isolated from red beet (Beta vulgaris L. var. conditiva) through alkaline and enzymatic treatments. Food Hydrocolloids 26: 249–260.Google Scholar
  44. Flavell, R.B., M.D. Bennet, and J.B. Smith. 1974. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics 12: 257–269.Google Scholar
  45. Fletcher, A. 2006. Lycopene colorant achieves regulatory approval. http://www.foodnavigator.com/Legislation/Lycopene-colorant-achieves-regulatory-approval. Accessed 25 Nov 2011.
  46. Fowden, L., P.J. Lea, and E.A. Bell. 1979. The non-protein amino acids in plants. Advances in Enzyme Research 50: 117–175.Google Scholar
  47. Francis, F.J. 1986. Handbook of food colorant patents, 1st ed. Westport: Food and Nutrition Press.Google Scholar
  48. Fransz, P.F., C. Alonso-Blanco, T.B. Liharska, et al. 1996. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. The Plant Journal 9: 421–430.Google Scholar
  49. Gabelman, W.H., I.L. Goldman, and D.N. Breitbach. 2002. High pigment beet. Google Patents.Google Scholar
  50. Gasztonyi, M.N., H. Daood, M.T. Hajos, and P. Biacs. 2001. Comparison of red beet (Beta vulgaris var conditiva) varieties on the basis of their pigment components. Journal of the Science of Food and Agriculture 81: 932–933.Google Scholar
  51. Gennari, L., M. Felletti, M. Blasa, C. Celeghini, A. Corallini, and P. Ninfali. 2011. Total extract of Beta vulgaris var. Cicla seeds versus its purified phenolic components: Antioxidant activities and antiproliferative effects against colon cancer cells. Phytochemical Analysis 22: 272–279.Google Scholar
  52. Georgiev, V., M. Ilieva, T. Bley, and A. Pavlov. 2008. Betalain production in plant in vitro systems. Acta Physiologiae Plantarum 30: 581–593.Google Scholar
  53. Georgiev, V., M. Ilieva, T. Bley, and A. Pavlov. 2010a. Review: Betalain production in plant in vitro systems. Acta Physiologiae Plantarum 30: 581–593.Google Scholar
  54. Georgiev, V.G., J. Weber, E.-M. Kneschke, P.N. Denev, T. Bley, and A.I. Pavlov. 2010b. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit Dark Red. Plant Foods for Human Nutrition 65: 105–111.Google Scholar
  55. Gokhale, S., and S. Lele. 2011. Dehydration of red beet root (Beta vulgaris) by hot air drying: Process optimization and mathematical modeling. Food Science and Biotechnology 20: 955–964.Google Scholar
  56. Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57: 761–780.Google Scholar
  57. Gurel, E., S. Gurel, and P.G. Lemaux. 2008. Biotechnology applications for sugar beet. Critical Reviews in Plant Sciences 27: 108–140.Google Scholar
  58. Haber, G.J., C.T. Tan, and J. Wu. 1979. Stable beet color composition. US Patent No 4132793.Google Scholar
  59. Hanelt, P., R. Büttner, R. Mansfeld, and R. Kilian. 2001. Mansfeld’s encyclopedia of agricultural and horticultural crops – Institute of Plant Genetics and Crop Plant Research, 235–241. Berlin: Springer.Google Scholar
  60. Hansen, A., C. Plever, H. Pedersen, et al. 1994. Efficient in vitro chromosome doubling during Beta vulgaris ovule culture. Plant Breeding 112: 89–95.Google Scholar
  61. Havlikova, L., K. Mikova, and V. Kyzlink. 1983. Heat stability of betacyanins. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 177: 247–250.Google Scholar
  62. Havlikova, L., K. Mikova, and V. Kyzlink. 1985. Red beet pigments as soft drink colorants. Food/Nahrung 29: 723–730.Google Scholar
  63. Herbach, K., F. Stintzing, and R. Carle. 2004. Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. Journal of Food Science 69: C491–C498.Google Scholar
  64. Herbach, K., F. Stintzing, and R. Carle. 2006. Betalin stability and degradation-structure and chromatic aspects. Journal of Food Science 71: R41–R50.Google Scholar
  65. Heslop-Harrison, J.S., and T. Schwarzacher. 1993. Molecular cytogenetics – Biology and applications in plant breeding. In Chromosomes today, vol. XI, ed. A. Chandly and A.T. Sumner, 191–198. London: Chapmann & Hall.Google Scholar
  66. Ivanov, M.K., A.S. Revenko, and G.M. Dymshits. 2004. Cytoplasmic male sterility-associated structural variation of the mitochondrial genome regions containing rps3 and orf215 in sugar beet Beta vulgaris L. Molecular Biology 38: 345–350.Google Scholar
  67. Jackman, R.I., and J.L. Smith. 1996. Anthocynins and betalain. In Natural food colorants, ed. C.F. Hendry and J.D. Houghton, 244–309. London: Blackie Academic and Professional.Google Scholar
  68. Jiratanan, T., and R.H. Liu. 2004. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 52: 2659–2670.Google Scholar
  69. Joshi, R., S. Adhikari, B.S. Patro, S. Chattopadhya, and T. Mukherjee. 2001. Free radical scavenging behavior of folic acid: Evidence for possible antioxidant activity. Free Radical Biology & Medicine 30: 1390–1399.Google Scholar
  70. Kaminski, W., E. Tomczak, and E. Skorupska. 2004. Estimation of the effect of shape and temperature on drying kinetics using MLP. Drying Technology 22: 191–200.Google Scholar
  71. Kannan, V. 2011. Extraction of bioactive compounds from whole red cabbage and beetroot using pulsed electric fields and evaluation of their functionality. Master of Science Thesis in Food Science and Technology, University of Nebraska, Lincoln. http://digitalcommons.unl.edu/foodscidiss/11. Accessed 4 Feb 2011.
  72. Kanner, J., S. Harel, and R. Granit. 2001. Betalains a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry 49: 5178–5185.Google Scholar
  73. Kapadia, G.J., H. Tokuda, T. Konoshima, and H. Nishino. 1996. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Letters 100: 211–214.Google Scholar
  74. Kapadia, G.J., M.A. Azuine, R. Sridhar, Y. Okuda, A. Tsuruta, E. Ichiishi, T. Mukainake, M. Takasaki, T. Konoshima, H. Nishino, and H. Tokuda. 2003. Chemoprevention of DMBA-induced UV-B promoted, NOR-1-induced TPA promoted skin carcinogenesis, and DEN-induced phenobarbital promoted liver tumors in mice by extract of beetroot. Pharmacological Research 47: 141–148.Google Scholar
  75. Kapadia, G.J., M.A. Azuine, G. Subba Rao, et al. 2011. Cytotoxic effect of the red beetroot (Beta vulgaris L.) extract compared to doxorubicin (adriamycin) in the human prostate (PC-3) and breast (MCF-7) cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry) 11: 280–284.Google Scholar
  76. Koul, V.K., M.P. Jain, S. Koul, V.K. Sharma, C.L. Tikoo, and S.M. Jain. 2002. Spray drying of beet root juice using different carriers. Indian Journal of Chemical Technology 9: 442–445.Google Scholar
  77. Križnik, B., and D. Pavoković. 2010. Enhancement of betanin yield in transformed cells of sugar beet (Beta vulgaris L.). Acta Botanica Croatica 69: 173–182.Google Scholar
  78. Kubo, T., S. Nishizawa, and T. Mikami. 1999. Alterations in organization and transcription of the mitochondrial genome of cytoplasmic male sterile sugar beet (Beta vulgaris L.). Molecular and General Genetics MGG 262: 283–290.Google Scholar
  79. Kujala, T.S., J.M. Loponen, K.D. Klika, and K. Pihlaja. 2000. Phenolic and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry 48: 5338–5342.Google Scholar
  80. Kujala, T., K. Klika, V. Ovcharenko, J. Laponen, M. Vienola, and K. Pihlaja. 2001a. 5,5′-6,6′-Tetrahydroxy-3,3′-biindolyl from beetroot (Beta vulgaris) peel extract. Zeitschrift für Naturforschung. C 56: 714–718.Google Scholar
  81. Kujala, T., J. Laponen, and K. Pihlaja. 2001b. Betalains and phenolics in red beetroot (Beta vulgaris) peel extract. Zeitschrift für Naturforschung. C 56: 343–348.Google Scholar
  82. Kujala, T.S., M.S. Vienola, K.D. Klika, J.M. Loponen, and K. Pihlaja. 2002. Betalain and phenolic composition of four beetroot (Beta vulgaris) cultivars. European Food Research and Technology 214: 505–510.Google Scholar
  83. Lange, W., W.A. Brandenburg, and T.S.M.D.E. Bock. 1999. Taxonomy and cultonomy of beet (Beta vulgaris L.). Botanical Journal of the Linnean Society 130: 81–96.Google Scholar
  84. Lansley, K.E., P.G. Winyard, J. Fulford, A. Vanhatalo, and S.J. Bailey. 2011. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. Journal of Applied Physiology 10: 591–600.Google Scholar
  85. Latorre, M.E., P. Narvaiz, A.M. Rojas, and L.N. Gerschenson. 2010. Effects of gamma irradiation on bio-chemical and physico-chemical parameters of fresh-cut red beet (Beta vulgaris L. var. conditiva) root. Journal of Food Engineering 98: 178–191.Google Scholar
  86. Lechner, J.F., L.S. Wang, C.M. Rocha, B. Larue, C. Henry, M. McIntyre Colleen, K.M. Riedl, S.J. Schwartz, and G.D. Stoner. 2010. Drinking water with red beetroot color antagonizes esophageal carcinogenesis in N-nitrosomethylbenzykamine-treated rats. Journal of Medicinal Food 13(3): 733–739.Google Scholar
  87. Lee, C.Y., and N.L. Smith. 1979. Blanching effect on polyphenoloxidase activity in table beets. Journal of Food Science 44: 82–86.Google Scholar
  88. Lee, Y.N., R.C. Wiley, M.J. Sheu, and D.V. Schlimme. 1982. Purification and concentration of betalaines by ultrafiltration and reverse osmosis. Journal of Food Science 47: 465–471, 475.Google Scholar
  89. Lee, J.H., C.W. Son, M.Y. Kim, M.H. Kim, H.R. Kim, E.S. Kwak, S. Kim, and M.R. Kim. 2009. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6 J mice fed high fat high cholesterol diet. Nutrition Research and Practice 3: 114–121.Google Scholar
  90. Leitner, J., B. Hinterstoisser, M. Wastyn, J. Keckes, and W. Gidl. 2007. Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14: 419–425.Google Scholar
  91. Levigne, S., M.C. Ralet, and J.F. Thibault. 2002. Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydrate Polymers 49: 145–153.Google Scholar
  92. Levin, D.A., J. Francisco-Ortega, and R.K. Jansen. 1996. Hybridization and the extinction of rare plant species. Conservation Biology 10: 10–16.Google Scholar
  93. Lewicki, P.P. 2006. Design of hot air drying for better foods. Trends in Food Science and Technology 17: 153–163.Google Scholar
  94. Liu, L.S., V.L. Finkenstadt, C.K. Liu, T. Jin, M.L. Fishman, and K.B. Hicks. 2007. Preparation of poly (lactic acid) and pectin composite films intended for applications in antimicrobial packaging. Journal of Applied Polymer Science 106: 801–810.Google Scholar
  95. Loginova, K., N. Lebovka, and E. Vorobiev. 2011. Pulsed electric field assisted aqueous extraction of colorants from red beet. Journal of Food Engineering 106: 127–133.Google Scholar
  96. Lopez, N., E. Puertolas, S. Condon, J. Raso, and I. Alvarez. 2009. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering 90: 60–66.Google Scholar
  97. Lu, G., C.G. Edwards, J.K. Fellman, et al. 2003. Biosynthetic origin of geosmin in red beets (Beta vulgaris L.). Journal of Agricultural and Food Chemistry 51: 1026–1029.Google Scholar
  98. Mabry, T.J., and A.S. Dreiding. 1968. The betalaines. In Recent advances in phytochemistry, vol. 1, ed. R. Mabry, E. Alston, and V.C. Runeckles, 145–160. New York: Appleton Century Crofts.Google Scholar
  99. Mabry, T.J., A. Taylor, and B.L. Turner. 1963. Betacyanins and their distribution. Phytochemistry 2: 61–64.Google Scholar
  100. Marfil, P., E. Santos, and V. Telis. 2008. Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT- Food Science and Technology 41: 1642–1647.Google Scholar
  101. Marggraf, A.S. 1749. Expériences chymiques, faites dans le dessein de tirer un véritable sucre de diverse oplantes, qui croissent dans nos contrées’. Histoire de l’Académie Royale des Sciences et Belles Lettres, Berlin, pp. 79–90.Google Scholar
  102. Martinez-Parra, J., and R. Munoz. 2001. Characterization of betacyanin oxidation catalyzed by a peroxidase from Beta vulgaris L. roots. Journal of Agricultural and Food Chemistry 49: 4064–4068.Google Scholar
  103. McGinnis, E.E., M.H. Meyer, and A.G. Smith. 2010. Sweet and sour: A scientific and legal look at herbicide-tolerant sugar beet. The Plant Cell Online 22: 1653–1657.Google Scholar
  104. McGrath, J.M., M. Saccomani, P. Stevanato, and E. Biancardi. 2007. Beet. In Genome mapping and molecular breeding in plants, Vegetables, vol. 5, ed. C. Kole, 191–207. Berlin: Springer.Google Scholar
  105. Mesbah, M., T.S.M. de Bock, J.M. Sandbrink, R.M. Klein-Lankhorst, and W. Lange. 1997. Molecular and morphological characterization of monosomic additions in Beta vulgaris, carrying extra chromosomes of B. procumbens or B. patellaris. Molecular Breeding 3: 147–157.Google Scholar
  106. Mesbah, M., J. Wennekes-Van Eden, J.H. De Jong, T.S. De Bock, and W. Lange. 2000. FISH to mitotic chromosomes and extended DNA fibres of Beta procumbens in a series of monosomic additions to beet (B. vulgaris). Chromosome Research 8: 285–293.Google Scholar
  107. Micard, V., C. Renard, and J.F. Thibault. 1994. Studies on enzymic release of ferulic acid from sugar-beet pulp. Lebensmittel-Wissenschaft und-Technologie 27: 59–66.Google Scholar
  108. Michel, F., J.F. Thibault, J.L. Barry, and R. de Baynast. 1988. Preparation and characterisation of dietary fibre from sugar beet pulp. Journal of the Science of Food and Agriculture 42: 77–85.Google Scholar
  109. Micronutrient Initiative. 2009. Investing in the future: A united call to action on vitamin and mineral deficiencies: Global report. 978-1-894217-31-6.Google Scholar
  110. Mohamed, A.A., V. Finkenstadt, and D. Palmquist. 2008. Thermal properties of extruded/injection-molded poly (lactic acid) and biobased composites. Journal of Applied Polymer Science 107: 898–908.Google Scholar
  111. Morris, G.A., M.-C. Ralet, E. Bonnin, J.-F. Thibault, and S.E. Harding. 2010. Physical characterisation of the rhamnogalacturonan and homogalacturonan. Carbohydrate Polymers 82: 1161–1167.Google Scholar
  112. Nayak, C.A., S. Chethana, N.K. Rastogi, and K. Raghavarao. 2006. Enhanced mass transfer during solid-liquid extraction of gamma-irradiated red beetroot. Radiation Physics and Chemistry 75: 173–178.Google Scholar
  113. Neelwarne, B., and T. Rudrappa. 2009. Bioreactor for cultivation of red beet hairy roots and in situ recovery of primary and secondary metabolites. Engineering Life Sciences 9: 227–238.Google Scholar
  114. Nemzer, B., Z. Pietrzkowski, A. Spórna, and P.W. Stalica. 2011. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chemistry 1: 42–53.Google Scholar
  115. Netzel, M., F. Stintzing, D. Quaas, G. Strass, R. Carle, R. Bitsch, I. Bitsch, and T. Frank. 2005. Renal excretion of antioxidative constituents from red beet in humans. Food Research International 38: 1051–1058.Google Scholar
  116. Nilsson, T. 1970. Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.). Lantbrukhogskolans Annaler 36: 179–219.Google Scholar
  117. Nilsson, T. 1973. The pigment content in beetroot with regard to cultivar, growth, development and growing conditions. Swedish Journal of Agricultural Research 3: 187–200.Google Scholar
  118. Ninfali, P., M. Bacchiocca, A. Antonelli, E. Biagiotti, A.M. Gioacchino, G. Piccoli, V. Stocchi, and G. Brandi. 2007. Characterization and biological activity of main flavonoids from Swiss chard (Beta vulgaris subspecies cycla). Phytomedicine 14: 216–221.Google Scholar
  119. Nottingham. S. 2004. Beetroot e-book- 2004. The Times, London. http://stephennottingham.co.uk. Accessed 28 Jan 2011.
  120. Oosterveld, A., G. Beldman, H.A. Schols, and A.G.J. Voragen. 2000. Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydrate Research 328: 185–197.Google Scholar
  121. Oosterveld, A., I. Pol, G. Beldman, and A. Voragen. 2001. Isolation of feruloylated arabinans and rhamnogalacturonans from sugar beet pulp and their gel forming ability by oxidative cross-linking. Carbohydrate Polymers 44: 9–17.Google Scholar
  122. Østergaard, L., M. Petersen, O. Mattsson, and J. Mundy. 2002. An Arabidopsis callose synthase. Plant Molecular Biology 49: 559–566.Google Scholar
  123. Owen, F.V. 1942. Inheritance of cross- and self-sterility and self-fertility in Beta vulgaris L. Journal of Agricultural Research 64: 679–698.Google Scholar
  124. Pai, S., and P. D’Mello. 2004. Stability evaluation of beetroot colour in various pharmaceutical matrices. Indian Journal of Pharmaceutical Sciences 66: 696–699.Google Scholar
  125. Patkai, G.Y., J. Barta, and I. Varsanyi. 1997. Decomposition of anticarcinogen factors of the beetroot during juice and nectar production. Cancer Letters 114: 105–106.Google Scholar
  126. Pavier, C., and A. Gandini. 2000. Oxypropylation of sugar beet pulp. 1. Optimisation of the reaction. Industrial Crops and Products 12: 1–8.Google Scholar
  127. Pavlov, A., P. Kovatcheva, V. Georgiev, I. Koleva, and M. Ilieva. 2002. Biosynthesis and radical scavenging activity of betalains during the cultivation of red beet (Beta vulgaris) hairy root cultures. Zeitschrift für Naturforschung. C, Journal of Bioscience 57: 640–644.Google Scholar
  128. Pavoković, D., G. Rusak, V. Besendorfer, and M. Krsnik-Rasol. 2009. Light-dependent betanin production by transformed cells of sugar beet. Food Technology and Biotechnology 47: 153–158.Google Scholar
  129. Pedreno, M.A., and J. Escribano. 2001. Correlation between antiradical activity and stability of betanine from Beta vulgaris L. roots under different pH, temperature and light conditions. Journal of the Science of Food and Agriculture 81: 627–631.Google Scholar
  130. Pietrzkowski, Z. and W.C. Thresher. 2008. Solid betalain compositions and methods. Google Patents.Google Scholar
  131. Prudencio, I.D., E.S. Prudêncio, E.F. Gris, et al. 2008. Petit suisse manufactured with cheese whey retentate and application of betalains and anthocyanins. LWT- Food Science and Technology 41: 905–910.Google Scholar
  132. Pyo, Y.-H., T.-C. Lee, L. Logendra, and R.T. Rosen. 2004. Antioxidant activity of phenolic compounds of Swiss chard (Beta vulgaris subspecies cicla) extracts. Food Chemistry 85: 19–26.Google Scholar
  133. Rakin, M., J. Baras, and M. Vukasinovic. 2004. The influence of brewer’s yeast autolysate and lactic acid bacteria on the production of a functional food additive based on beetroot juice fermentation. Food Technology and Biotechnology 42: 109–113.Google Scholar
  134. Rakin, M., M. Vukasinovic, S. Silver-Marinkovic, and M. Maksimovic. 2007. Contribution of lactic acid fermentation to improve nutritive quality of vegetable juices enriched with brewer’s yeast autolysate. Food Chemistry 100: 599–602.Google Scholar
  135. Rayner, P.B. 1993. Food and drink colors from natural sources. Food Marketing Technology 7: 9–10.Google Scholar
  136. Rouilly, A., and L. Rigal. 2002. Agro-materials: A bibliographic review. Journal of Macromolecular Science: Part C: Polymer Reviews 42: 441–479.Google Scholar
  137. Rouilly, A., J. Jorda, and L. Rigal. 2006a. Thermo-mechanical processing of sugar beet pulp. I. Twin-screw extrusion process. Carbohydrate Polymers 66: 81–87.Google Scholar
  138. Rouilly, A., J. Jorda, and L. Rigal. 2006b. Thermo-mechanical processing of sugar beet pulp. II. Thermal and rheological properties of thermoplastic SBP. Carbohydrate Polymers 66: 117–125.Google Scholar
  139. Rouilly, A., C. Geneau-Sbartaī, and L. Rigal. 2009. Thermo-mechanical processing of sugar beet pulp. III. Study of extruded films improvement with various plasticizers and cross-linkers. Bioresource Technology 100: 3076–3081.Google Scholar
  140. Rubenstein, E., H. Zhou, K.M. Krasinska, A. Chien, and C.H. Becker. 2006. Azetidine-2-carboxylic acid in garden beets (Beta vulgaris). Phytochemistry 67: 898–903.Google Scholar
  141. Rudrappa, T., V. Lakshmanan, R. Kaunain, N.M. Singara, and B. Neelwarne. 2007. Purification and characterization of an intracellular peroxidase from genetically transformed roots of red beet (Beta vulgaris L.). Food Chemistry 105: 1312–1320.Google Scholar
  142. Saccomani, M., P. Stevanato, D. Trebbi, J.M. McGrath, and E. Binacardi. 2009. Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 169: 19–29.Google Scholar
  143. Schmidt, T., and J. Heslop-Harrison. 1996. High-resolution mapping of repetitive DNA by in situ hybridization: Molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Molecular Biology 30: 1099–1113.Google Scholar
  144. Schmidt, T., S. Kubis, and J.S. Heslop-Harrison. 1995. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): Lines and Tyl-copia-like elements as major components of the genome. Chromosome Research 3: 335–345.Google Scholar
  145. Schmidt, T., C. Jung, J. Heslop-Harrison, and M. Kleine. 1997. Detection of alien chromatin ­conferring resistance to the beet cyst nematode (Heterodera schachtii Schm.) in cultivated beet (Beta vulgaris L.) using in situ hybridization. Chromosome Research 5: 186–193.Google Scholar
  146. Schouten, S., and A.C.R. Schaik. 1980. Storage of red beets. Symposium on Postharvest Handling of Vegetables 116: 25–30.Google Scholar
  147. Scott, J., F. Rébeillé, and J. Fletcher. 2000. Folic acid and folates: The feasibility for nutritional enhancement in plant foods. Journal of the Science of Food and Agriculture 80: 795–824.Google Scholar
  148. Sembries, S., G. Dongowski, K. Mehrlander, F. Will, and H. Dietrich. 2006. Physiological effects of extraction juices from apple, grape, and red beet pomaces in rats. Journal of Agricultural and Food Chemistry 54: 10269–10280.Google Scholar
  149. Sepulveda-Jimenez, G., P. Rueda-Benitez, H. Porta, and M. Rocha-Sosa. 2004. Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiological and Molecular Plant Pathology 64: 125–133.Google Scholar
  150. Shen, D., Z. Wang, and M. Wu. 1987. Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma 95: 311–314.Google Scholar
  151. Shih, C.C., and R.C. Wiley. 1981. Betacyanin and betaxanthine-decolorizing enzymes in the beet (Beta vulgaris L.) root. Journal of Food Science 47: 164–166, 172.Google Scholar
  152. Shynkaryk, M., N. Lebovka, and E. Vorobiev. 2008. Pulsed electric fields and temperature effects on drying and rehydration of red beetroots. Drying Technology 26: 695–704.Google Scholar
  153. Sivakumar, V., J.L. Anna, J. Vijayeeswarri, and G. Swaminathan. 2009. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry 16: 782–789.Google Scholar
  154. Skaracis, G.N. 1994. Optimizing control of Cercospora leaf spot in Greece: Prospects and limits in forecasting the disease. Commission Mediterraneenne de l’IIRB, 161–174.Google Scholar
  155. Sloan, M.E., P. Rodis, and B.P. Wasserman. 1987. CHAPS solubilization and functional reconstitution of β-glucan synthase from red beet (Beta vulgaris L.) storage tissue. Plant Physiology 85: 516–522.Google Scholar
  156. Sreedhar, R., K. Roohie, P. Maya, L. Vnkatachalam, and N. Bhagyalakshmi. 2009. Biotic elicitors enhance flavour compounds during accelerated curing of vanilla beans. Food Chemistry 112: 461–468.Google Scholar
  157. Staginnus, C., B. Huettel, C. Desel, T. Schmidt, and G. Kahl. 2001. A PSR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Research 9: 591–605.Google Scholar
  158. Strack, D., T. Vogt, and W. Schliemann. 2003. Recent advances in betalain research. Phytochemistry 62: 247–269.Google Scholar
  159. Strasser, G., and R. Amadò. 2001. Pectic substances from red beet (Beta vulgaris L. var. conditiva). Part I. Structural analysis of rhamnogalacturonan I using enzymic degradation and methylation analysis. Carbohydrate Polymers 44: 63–70.Google Scholar
  160. Strasser, G., and R. Amadò. 2002. Pectic substances from red beet (Beta vulgaris L. var. conditiva). Part II. Structural characterization of rhamnogalacturonan II. Carbohydrate Polymers 48: 263–269.Google Scholar
  161. Subbarao, G.V., R.M. Wheeler, and G.W. Stutte. 2000. Feasibilities of substituting sodium for potassium in crop plants for advanced life support system. Life Support and Biosphere Science 7: 225–232.Google Scholar
  162. Sun, R., and S. Hughes. 1998. Fractional extraction and physico-chemical characterization of hemicelluloses and cellulose from sugar beet pulp. Carbohydrate Polymers 36: 293–299.Google Scholar
  163. Tesoriere, L., M. Allegra, D. Butera, and M.A. Livrea. 2004a. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. American Journal of Clinical Nutrition 80: 941–945.Google Scholar
  164. Tesoriere, L., D. Butera, A.M. Pintaudi, M. Allegra, and M.A. Livrea. 2004b. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: A comparative study with vitamin C. American Journal of Clinical Nutrition 80: 391–395.Google Scholar
  165. Tesoriere, L., D. Butera, M. Allegra, M. Fazzari, and M.A. Livrea. 2005. Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. Journal of Agricultural and Food Chemistry 53: 1266–1270.Google Scholar
  166. Tesoriere, L., M. Fazzari, F. Angileri, C. Gentile, and M.A. Livrea. 2008. In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta. Journal of Agricultural and Food Chemistry 56: 10487–10492.Google Scholar
  167. Thimmaraju, R., N. Bhagyalakshmi, M.S. Narayan, and G.A. Ravishankar. 2003a. Kinetics of betalaine release under the influence of physical factors. Process Biochemistry 38: 1067–1074.Google Scholar
  168. Thimmaraju, R., N. Bhagyalakshmi, M.S. Narayan, and G.A. Ravishankar. 2003b. Food grade chemical and biological agents assist the release of betalaines from hairy root cultures of Beta vulgaris. Biotechnology Progress 19: 1274–1282.Google Scholar
  169. Thimmaraju, R., V. Kumar, N. Bhagyalakshmi, and G.A. Ravishankar. 2005. Peroxidase production from hairy root cultures of red beet (Beta vulgaris). Electronic Journal of Biotechnology 8: 185–196.Google Scholar
  170. Thimmaraju, R., B. Neelwarne, and G.A. Ravishankar. 2004. In situ and ex situ adsorption and recovery of betalains from hairy root cultures of Beta vulgaris. Biotechnology Progress 20: 777–785.Google Scholar
  171. Thimmaraju, R., B. Neelwarne, L. Venkatachalam, R.V. Sreedhar, and G.A. Ravishankar. 2006. Elicitation of peroxidase activity in genetically transformed root cultures of Beta vulgaris L. Electronic Journal of Biotechnology 9: 512–520.Google Scholar
  172. Thimmaraju, R., L. Venkatachalam, M.S.K. Roohie, M.S. Narayan, and N. Bhagyalakshmi. 2007. Purification and characterization of an intracellular peroxidase from genetically transformed roots of red beet (Beta vulgaris L.). Food Chemistry 105: 1312–1320.Google Scholar
  173. Turquois, T., M. Rinaudo, F. Taravel, and A. Heyraud. 1999. Extraction of highly gelling pectic substances from sugar beet pulp and potato pulp: Influence of extrinsic parameters on their gelling properties. Food Hydrocolloids 13: 255–262.Google Scholar
  174. Vitti, M.C.D., L.K. Yamamoto, F.F. Sasaki, J.S. Aguila, R.A. Kluge, and A.P. Jacomimo. 2005. Quality of minimally processed beet roots stored in different temperatures. Brazilian Archives of Biology and Technology 48: 503–510.Google Scholar
  175. von Elbe, J.H. 1975. Stability of betalaines as food colors. Food Technology 5: 42–44.Google Scholar
  176. von Elbe, J.H., and E.L. Attoe. 1985. Oxygen involvement in betanine degradation – Measurement of active oxygen species and oxidation-reduction potentials. Food Chemistry 16: 49–67.Google Scholar
  177. Von Elbe, J.H., I.Y. Maing, and C.H. Amundson. 1974. Color stability of betanin. Journal of Food Science 39: 334–337.Google Scholar
  178. Wasserman, B.P., L.L. Eiberger, and M.P. Guilfoy. 1984. Effect of hydrogen peroxide and phenolic compounds on horseradish peroxidase-catalyzed decolorization of betalain pigments. Journal of Food Science 49: 536–538.Google Scholar
  179. Webb, A.J., N. Patel, S. Loukogeorgakis, et al. 2008. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51: 784–790.Google Scholar
  180. Wheeler, R.M., and J.C. Sage. 2006. Crop production for advanced life support systems. Technical Reports. Accessed on 25th November 2011. Paper 1. http://docs.lib.purdue.edu/nasatr/1.
  181. Wiley, R.C., and Y.N. Lee. 1978. Recovery of betalaines from red beets by a diffusion-extraction procedure. Journal of Food Science 43: 1056–1058.Google Scholar
  182. Wiley, R.C., Y.N. Lee, J.J. Saladini, R.C. Wyss, and H.H. Topalian. 1979. Efficiency studies of a continuous diffusion apparatus for the recovery of betalaines from red table beet. Journal of Food Science 44: 208–211.Google Scholar
  183. Wink, D.A., and N. Paolocci. 2008. Mother was right: Eat your vegetables and do not spit! When oral nitrate helps with high blood pressure. Hypertension 51: 617–619.Google Scholar
  184. Wiśniewska, E., and A. Majewska-Sawka. 2008. The differences in cell wall composition in leaves and regenerating protoplasts of Beta vulgaris and Nicotiana tabacum. Biologia Plantarum 52: 634–641.Google Scholar
  185. Wong, E., and M. Bregola. 1997. Use of sugar beet pulp for making paper or cardboard. WO 97/30215.Google Scholar
  186. Yoo, S.D., and S.W. Harcum. 1999. Xanthan gum production from waste sugar beet pulp. Bioresource Technology 70: 105–109.Google Scholar
  187. Zhang, D., S.M. Lanier, J.A. Downing, J.L. Avent, J. Lum, and J.L. McHale. 2008. Betalain ­pigments for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 195: 72–80.Google Scholar
  188. Zhong, X., P.F. Fransz, J. Wennekes-van Eden, et al. 1996a. High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence in-situ hybridisation. Plant Molecular Biology Reporter 14: 232–242.Google Scholar
  189. Zhong, X.B., J.H. de Jong, and P. Zabel. 1996b. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Research 4: 24–28.Google Scholar
  190. Zohary, D., and M. Hopf. 2000. Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford: Oxford University Press.Google Scholar
  191. Zvitov, R., A. Schwartz, and A. Nussinvitch. 2003. Comparison of betalain extraction from beet (Beta vulgaris) by low electrical field versus cryogenic freezing. Journal of Texture Studies 34: 83–94.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bhagyalakshmi Neelwarne
    • 1
  • Sowbhagya B. Halagur
    • 2
  1. 1.Plant Cell Biotechnology DepartmentCentral Food Technological Research Institute (Council of Scientific and Industrial Research)MysoreIndia
  2. 2.Plantation Products, Spice and Flavour Technology DepartmentCentral Food Technological Research Institute (Council of Scientific and Industrial Research)MysoreIndia

Personalised recommendations