Coupling Between Leaching and Mechanical Behaviour of Concrete

  • J. M. Torrenti
  • T. de Larrard
  • F. Benboudjema


In the case of a radioactive waste disposal, concrete containment structures must be studied over extended periods during which it is necessary to account for a possible degradation by calcium leaching due to on-site water. This phenomenon affects the microstructure of concrete and then is coupled with the mechanical behaviour of concrete. The effect of leaching on the static behaviour and then the possible influence of cracks on leaching will be considered. But there is also a possible coupling due to tertiary creep. In this case, failure occurs eventually. And finally, a probabilistic approach is used with the leaching and tertiary creep models to evaluate the lifetime of a concrete structure subjected to chemical and mechanical loading.


Compressive Strength Effective Stress Creep Strain Damage Model Creep Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Patrick Le Bescop for his help concerning the reference on experiments at CEA.


  1. 1.
    Adenot F (1992) Durabilité du béton: caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment, PhD thesis, Université d’Orléans (in French)Google Scholar
  2. 2.
    Gérard B (1996) Contribution des couplages mécaniques-chimie-transfert dans la tenue à long terme des ouvrages de stockage de déchets radioactifs, PhD thesis, ENS Cachan (in French)Google Scholar
  3. 3.
    Ulm FJ, Torrenti JM, Adenot F (1999) Chemoporoplasticity of calcium leaching in concrete. J Eng Mech 125(10):1200–1211CrossRefGoogle Scholar
  4. 4.
    Bernard F, Kamali-Bernard S, Prince W (2008) 3D multi-scale modelling of mechanical behaviour of sound and leached mortar. Cement Concr Res 38:449–458CrossRefGoogle Scholar
  5. 5.
    Carde C, Francois R, Torrenti JM (1996) Leaching of both calcium hydroxyde and CSH from cement paste: modeling the mechanical behavior. Cement and concrete research 26(8):1257–1268CrossRefGoogle Scholar
  6. 6.
    Huang B, Qian C (2011) Experiment study of chemo-mechanical coupling behavior of leached concrete. Constr Build Mater 25:2649–2654CrossRefGoogle Scholar
  7. 7.
    Nguyen VH, Colina H, Torrenti JM, Boulay C, Nedjar B (2007) Chemomechanical coupling behaviour of leached concrete. Part 1: experimental results. Nucl Eng Des 237:2083–2089CrossRefGoogle Scholar
  8. 8.
    Richet C, Galle C, Le Bescop P, Peycelon H, Bejaoui S, Tovena I, Pointeau I, L’Hostis V, Lovera P (2004) Synthèse des connaissances sur le comportement à long terme des bétons – Application aux colis cimentés, rapport CEA-R-6050, 2004 (in French)Google Scholar
  9. 9.
    Mainguy M, Ulm FJ, Heukamp FH (2001) Similarity properties of demineralization and degradation of cracked porous materials. Int J Solid Struct 38:7079–7170MATHCrossRefGoogle Scholar
  10. 10.
    Rougelot T (2008) Etude expérimentale multi-échelles des couplages hydriques, mécaniques et chimiques dans les matériaux cimentaires, PhD thesis, Université de Lille (in French)Google Scholar
  11. 11.
    Rougelot T, Burlion N, Bernard D, Skoczylas F (2010) About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach. Cement and concrete research 40(2):271–283CrossRefGoogle Scholar
  12. 12.
    Chen JJ, Thomas JJ, Jennings HM (2006) Decalcification shrinkage of cement paste. Cement Cement and concrete research 36:801–809CrossRefGoogle Scholar
  13. 13.
    Rüsch H (1960) Researches toward a general flexural theory for structural concrete. ACI J 32(1):1–28Google Scholar
  14. 14.
    Li Z (1994) Effective creep Poisson’s ratio for damages concrete. Int J Fract 66:189–196CrossRefGoogle Scholar
  15. 15.
    Roll R (1964) Long time creep-recovery of highly stressed concrete cylinders, ACI SP-9, Symposium on creep, Portland Cement Association, Detroit, pp 115–128Google Scholar
  16. 16.
    Smadi MM, Slate FO, Nilsson AH (1987) Shrinkage and creep of high, medium and low strength concrete, including overloads. ACI Mater J 84(3):224–234Google Scholar
  17. 17.
    Reinhardt H-W, Rinder T (2006) Tensile creep of high-strength concrete. J Adv Concr Technol 4(2):277–283CrossRefGoogle Scholar
  18. 18.
    Reviron N (2009) Etude du fluage des bétons en traction. Application aux enceintes de confinement des centrales nucléaires à eau sous pression, PhD thesis, ENS de Cachan (in French)Google Scholar
  19. 19.
    Carpinteri A, Valente S, Zhou FP, Ferrara G, Melchiorri G (1997) Tensile and flexural creep rupture tests on partially damaged concrete specimens. Mater Struct 30:269–276CrossRefGoogle Scholar
  20. 20.
    Denarié E, Cécot C, Huet C (2006) Characterization of creep and crack growth interactions in the fracture behavior of concrete. Cement and concrete research 36:571–575CrossRefGoogle Scholar
  21. 21.
    Briffaut M, Benboudjema F, Nahas G, Torrenti JM (2011) Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Eng Struct 33(4):1390–1401. doi: 10.1016/j.engstruct.2010.12.044 CrossRefGoogle Scholar
  22. 22.
    Smadi MM, Slate FO (1989) Microcracking of high and normal strength concretes under short and long term loadings. ACI Mater J 86(2):117–127Google Scholar
  23. 23.
    Rossi P, Godart N, Robert JL, Gervais JP, Bruhat D (1994) Investigation of the basic creep of concrete by acoustic emission. Mater Struct 27(9):510–514CrossRefGoogle Scholar
  24. 24.
    Bazant ZP, Xiang Y (1997) Crack growth and life time of concrete under long time loading. J Eng Mech 123(4):350–358CrossRefGoogle Scholar
  25. 25.
    Berthollet A, Georgin JF, Reynouard JM (2004) Fluage tertiaire du béton en traction. Revue européenne de Génie Civil 8(2–3):235–260Google Scholar
  26. 26.
    Challamel N, Lanos C, Casandjian C (2005) Creep damage modelling for quasi-brittle materials. Eur J Mech Solid 24:593–613MATHCrossRefGoogle Scholar
  27. 27.
    Sellier A, Multon S, Buffo-Lacarrière L (2011) Non linear creep modelling, LMDC report no. 03-201Google Scholar
  28. 28.
    Mazotti C, Savoia M (2003) Non linear creep damage model for concrete under uniaxial compression. J Eng Mech 129(9):1065–1074CrossRefGoogle Scholar
  29. 29.
    Bazant ZP, Prasannan S (1989) Solidification theory for concrete creep. I. Formulation. J Eng Mech 115(8):1691–1703CrossRefGoogle Scholar
  30. 30.
    Mazars J (1986) A description of micro and macroscale damage of concrete. Eng Fract Mech 25:729–737CrossRefGoogle Scholar
  31. 31.
    Omar M, Pijaudier-Cabot G, Loukili A (2004) Etude comparative du couplage endommagement – fluage. Revue Française de Génie Civil 8:457–482Google Scholar
  32. 32.
    Brooks JJ (2005) 30-year creep and shrinkage of concrete. Mag Concr Res 57(9):545–556CrossRefGoogle Scholar
  33. 33.
    Illston JM (1965) The components of strains in concrete under sustained compressive stress. Mag Concr Res 17(50):21–28CrossRefGoogle Scholar
  34. 34.
    Benboudjema F, Meftah F, Torrenti JM (2005) Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct 27:239–250CrossRefGoogle Scholar
  35. 35.
    Benboudjema F, Torrenti JM (2008) Early age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506CrossRefGoogle Scholar
  36. 36.
    Buil M, Revertégat E, Oliver J (1992) A model of the attack of pure water or undersaturated lime solutions on cement, vol 2nd. American Society for Testing and Materials, Philadelphia, PA, pp 227–241Google Scholar
  37. 37.
    Bangert F, Kuhl D, Meschke G (2001) Finite element simulation of chemo-mechanical damage under cyclic loading conditions. In: de Borst R, Mazars J, Pijaudier-Cabot G, van Mier J (eds) Fracture mechanics of concrete structures, vol 1. Balkema, Rotterdam, pp 145–152Google Scholar
  38. 38.
    Saetta A, Scotta R, Vitaliani R (1998) Mechanical behavior of concrete under physical-chemical attacks. J Eng Mech (ASCE) 124:1100–1109CrossRefGoogle Scholar
  39. 39.
    Torrenti JM, Nguyen VH, Colina H, Le Maou F, Benboudjema F, Deleruyelle F (2008) Coupling between leaching and creep of concrete. Cement Concr Res 38(6):816–821CrossRefGoogle Scholar
  40. 40.
    Gérard B, Pijaudier-Cabot G, Laborderie C (1998) Coupled diffusion-damage modelling and the implications on failure due to strain localization. Int J Solid Struct 35(31–32):4107–4120MATHCrossRefGoogle Scholar
  41. 41.
    Kuhl D, Bangert F, Meschke G (2003) Coupled chemo-mechanical deterioration of cementitious materials - Part 1: modeling. Int J Solid Struct 41:15–40CrossRefGoogle Scholar
  42. 42.
    Kuhl D, Bangert F, Meschke G (2003) Coupled chemo-mechanical deterioration of cementitious materials – Part 2: numerical method and simulation. Int J Solid Struct 41:41–67CrossRefGoogle Scholar
  43. 43.
    Sellier A, Buffo-Lacarrière L, El Gonnouni M, Bourbon X (2010) Behavior of HPC nuclear waste disposal structures in leaching environment. Nucl Eng Des. doi: 10.1016/j.nucengdes.2010.11.002
  44. 44.
    de Larrard T, Benboudjema F, Colliat JB, Torrenti JM, Deleruyelle F (2010) Uncertainty propagation on damage evolution of a concrete structure submitted to coupled leaching and creep. EJECE 14(6–7):891–921Google Scholar
  45. 45.
    McKay MD, Conover WJ, Beckman RJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245MathSciNetMATHGoogle Scholar
  46. 46.
    Kirkpatric S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. M. Torrenti
    • 1
  • T. de Larrard
    • 2
  • F. Benboudjema
    • 2
  1. 1.Département MatériauxUniversité Paris Est, IFSTTARParisFrance
  2. 2.LMT/ENS Cachan/CNRS UMR8535/UPMC/PRES UniverSud ParisCachanFrance

Personalised recommendations