Skip to main content

Application of a Sub-lattice Model to Predictions of Cement Hydrate Chemistry

  • Chapter
  • First Online:
  • 1899 Accesses

Abstract

The incongruous dissolution of C-S-H gel is central to the performance of the chemical barrier in a deep geological disposal repository for nuclear wastes. Numerous thermodynamic models have been developed with which the dissolution of C-S-H gel may be simulated. One of the limitations in many of these models is their inflexibility in terms of incorporating additional chemical elements into the C-S-H gel structure. This chapter reports the application of a sub-lattice model for C-S-H gel, allowing for example, substitution of alumina, sulphate or heavy metals into the structure. Comparisons are drawn between the sub-lattice representation and other models, illustrating the inherent flexibility of this approach.

Examples are presented comparing the solubility of arsenic phases in the solid and aqueous solutions as calculated using the sub-lattice method. The partitioning of arsenic between solid and aqueous phases is explored over a range of activities and temperatures, ultimately bounded by the appearance of solubility limiting phases.

Extending this approach to more realistic cement mineral assemblages introduces both stoichiometric hydrates and an additional solid solution representing hydrogarnet. Two cement types are used for the final examples: an ordinary Portland cement and a blended Portland-blast furnace slag, typical of a UK encapsulation grout. Simulations of their dissolution by percolating groundwater illustrate the influence of these cements in controlling the local chemical environment through their service life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Atkinson A, Hearne JA, Knights CF (1987) Aqueous and thermodynamic modeling of CaO-SiO2-H2O gels. UK Atomic Energy Authority, Report AERER12548

    Google Scholar 

  2. Glasser FP, MacPhee DE, Lachowski EE (1987) Solubility modeling of cements: implications for radioactive waste immobilization. Mat Res Soc Symp Proc 84:331–341

    Google Scholar 

  3. Berner UR (1988) Modeling the incongruent dissolution of hydrated cement minerals. Radiochim Acta 44(45):387–393

    Google Scholar 

  4. Reardon EJ (1992) Problems and approaches to the prediction of the chemical composition of cement/water systems. Waste Manage 12:221–239

    Article  Google Scholar 

  5. Kulik DA, Kersten M (2001) Aqueous solubility diagrams for cementitious waste stabilization systems: II, End-member stoichiometries of ideal calcium silicate hydrate solid solutions. J Am Ceram Soc 84:3017–26

    Article  Google Scholar 

  6. Glasser FP, Pedersen J, Goldthorpe K, Atkins M (2005) Solubility reactions of cement components with NaCl solutions: I. Ca(OH)2 and C-S-H. Adv Cem Res 17:57–64

    Article  Google Scholar 

  7. Benbow S, Walker C, Savage D (2007) Intercomparison of cement solid-solution models. Issues affecting the geochemical evolution of repositories for radioactive waste. SKI Report 2007:29 ISSN 1104 1374

    Google Scholar 

  8. Soler JM (2007) Thermodynamic description of the solubility of C-S-H gels in hydrated Portland cement. Literature review. POSIVA Working Report 2007–88

    Google Scholar 

  9. Harris AW, Manning MC, Tearle WM, Tweed CJ (2002) Testing of models of the dissolution of cements—leaching of synthetic CSH gels. Cement Concr Res 32:731–746

    Article  Google Scholar 

  10. Kersten M (1996) Aqueous solubility diagrams for cementitious waste stabilization systems. 1. The C-S-H solid-solution system. Environ Sci Technol 30:2286–2293

    Article  Google Scholar 

  11. Börjesson S, Emrén A, Ekberg C (1997) A thermodynamic model for the calcium silicate hydrate gel, modelled as a non-ideal binary solid solution. Cement Concr Res 27:1649–1657

    Article  Google Scholar 

  12. Rahman MM, Nagasaki S, Tanaka S (1999) A model for dissolution of CaO-SiO2–H2O gel at Ca/Si > 1. Cement Concr Res 29:1091–1097

    Article  Google Scholar 

  13. Barry TI, Dinsdale AT, Gisby JA et al (1992) The compound energy model for ionic solutions with applications to solid oxides. J Phase Equilibria 13:459–475

    Article  Google Scholar 

  14. Davies RH, Dinsdale AT, Gisby JA et al (2002) MTDATA: Thermodynamics and phase equilibrium software from the National Physical Laboratory. CALPHAD 26:229–271

    Article  Google Scholar 

  15. Hunt C, Nottay J, Brewin A, Dinsdale AT (2002) NPL Report MATC(A) 83

    Google Scholar 

  16. Wang J, van der Zwaag S (2001) Composition design of a novel P containing TRIP steel. Z Metallkd 92:1299–1311

    Google Scholar 

  17. Putman DC, Thomson RC (2003) Modeling microstructural evolution of austempered ductile iron. Int J Cast Metals Res 16:191–196

    Google Scholar 

  18. Taskinen P, Dinsdale AT, Gisby JA (2004), Industrial slag chemistry—a case study of computational thermodynamics. Metal Separation Technologies III, Copper Mountain, Colorado

    Google Scholar 

  19. Gisby JA, Dinsdale AT, Barton-Jones I et al (2002), Phase equilibria in oxide and sulphide systems, in sulfide smelting. In: Stephens RL, Sohn HY (eds) TMS 2002 131st Annual Meeting & Exhibition, Seattle

    Google Scholar 

  20. Barry TI, Dinsdale AT, Gisby JA (1993) Predictive thermochemistry and phase equilibria of slags. JOM 45:32–38

    Article  Google Scholar 

  21. Ball RGJ, Mignanelli MA, Barry TI, Gisby JA (1993) The calculation of phase equilibria of oxide core-concrete systems. J Nucl Mater 201:238–249

    Article  Google Scholar 

  22. Barry TI, Dinsdale AT (1987) Thermodynamics of metal-gas-liquid reactions. Mater Sci Technol 3:501–511

    Google Scholar 

  23. Barry TI, Glasser FP (2000) Calculation of Portland cement clinkering reactions. Adv Cem Res 12:19–28

    Article  Google Scholar 

  24. Thomas JJ, Jennings HM (1998) Free-energy-based model of chemical equilibria in the CaO-SiO2-H2O system. J Am Ceram Soc 83:606–612

    Google Scholar 

  25. SGTE substance database, Thermodynamic properties of inorganic materials. Landolt-Börnstein Group IV (Physical Chemistry), vol 19, Springer, Berlin

    Google Scholar 

  26. Flint EP, Wells LS (1934) Study of the system CaO-SiO2–H2O at 30°C and of the reaction of water on anhydrous calcium silicates. J Res Natl Bur Stan 12:751–783

    Google Scholar 

  27. Roller PS, Ervin G Jr (1940) The system calcium-silica-water at 30°. The association of silicate ion in dilute alkaline solution. J Am Chem Soc 62:461–471

    Article  Google Scholar 

  28. Taylor HFW (1950) Hydrated calcium silicates. Part I. Compound formation at ordinary temperature. J Chem Soc 726:3682–3690

    Article  Google Scholar 

  29. Kalousek G (1952) Application of differential thermal analysis in a study of the system lime-silica-water. In: Third international symposium on the chemistry of cement, Cement and Concrete Association, London

    Google Scholar 

  30. Greenberg SA, Chang TN (1965) Investigation of the colloidal hydrated calcium silicates. II. Solubility relationships in the calcium-silica-water system at 25°C. J Phys Chem 69:182–188

    Article  Google Scholar 

  31. Fujii K, Kondo W (1981) Heterogeneous equilibrium of calcium silicate hydrate in water at 30°C. J Chem Soc/Dalt Trans 2:645–651

    Article  Google Scholar 

  32. Grutzeck M, Benesi A, Fanning B (1989) Silicon-29 magic angle spinning nuclear magnetic resonance study of calcium silicate hydrates. J Am Ceram Soc 72:665–668

    Article  Google Scholar 

  33. Cong X, Kirkpatrick RJ (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Bas Mat 3:144–156

    Article  Google Scholar 

  34. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cement Concr Res 34:1499–1519

    Article  Google Scholar 

  35. Walker CS, Savage D, Tyrer M, Ragnarsdottir KV (2007) Non-ideal solid solution aqueous solution modeling of synthetic calcium silicate hydrate. Cement Concr Res 37:502–511

    Article  Google Scholar 

  36. Phenrat T, Marhaba TF, Rachakornkij M (2005) J Hazard Mater 118(1–3):185–195

    Article  Google Scholar 

  37. Bond KA, Heath TG, Tweed CJ, MTDATA implementation of HATCHES: A referenced thermodynamic database for chemical equilibrium studies (1997) Nirex NSS/R379

    Google Scholar 

  38. Linke WF (1958) Solubilities of inorganic and metal-organic compounds (Ar-In), 4th edn., vol. 1, D. Van Nostrand Company Inc., Princeton, New Jersey

    Google Scholar 

  39. Nishimura T, Itoh CT, Tozawa K (1987) Arsenic Metallurgy, Fundamentals and Applications, pp 77–89

    Google Scholar 

  40. Stronach SA, Walker NL, Macphee DE, Glasser FP (1997) Reactions between cement and As(III) oxide: the system CaO-SiO2-As2O3-H2O at 25°C. Waste Manag 17:9–13

    Article  Google Scholar 

  41. Jennings HM (1986) Aqueous solubility relationships for two types of calcium silicate hydrate. J Am Ceram Soc 69:614–618

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tyrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gisby, J.A., Tyrer, M., Davies, R.H., Dinsdale, A.T., Walker, C.S., Glasser, F.P. (2013). Application of a Sub-lattice Model to Predictions of Cement Hydrate Chemistry. In: Bart, F., Cau-di-Coumes, C., Frizon, F., Lorente, S. (eds) Cement-Based Materials for Nuclear Waste Storage. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3445-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3445-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3444-3

  • Online ISBN: 978-1-4614-3445-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics