Skip to main content

Microbial Catalysis of Redox Reactions in Concrete Cells of Nuclear Waste Repositories: A Review and Introduction

  • Chapter
  • First Online:
Cement-Based Materials for Nuclear Waste Storage

Abstract

In order to be able to simulate the behaviour of radionuclides (RN) in waste repositories in space and time it is important to know their chemical speciation. 14C in its reduced form (CH4) does not have the same behaviour as in its oxidised form (CO2, CO 3 ). Similarly, tritium in the reduced gaseous form, HT, does not at all behave as its oxidised form (liquid water, HTO). For other RN such as U, Se, Tc, Np and Pu the impact is less striking as the change in redox state does not generate a phase change but a change in the sorption behaviour. As a rule of thumb the oxidised form is more mobile than the reduced form. Nuclear waste repositories for both low and intermediate level wastes are characterised by the presence of cementitious phases and zero-valent metals as part of waste, waste containers or engineered materials; organic matter is also likely present in both waste and engineered barrier. Hydrogen gas can be formed either via radiolysis or anaerobic corrosion. We therefore have two main electron donors to participate in redox reactions within an “unnaturally” high pH environment. Oxygen, present during the exploitation phase, is quickly consumed and not considered to diffuse significantly into deep or near-surface repositories. Nitrate, Fe(III) or Mn(IV) are only in specific cases present in significant quantities. Consequently, H+ and C4+ present in water and carbonate will become the main electron acceptors in redox reactions after reduction of sulphates, present in some wastes, concrete and host rocks; H+ and C4+ are likely to control in fine the overall redox potential and the speciation of RN. There is more and more evidence for the microbial control of reactions implying electron transfer within H and C species [Hoehler TM (2005) Biogeochemistry of dihydrogen (H2). In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in biological systems. Taylor & Francis, Boca Raton, FL, pp 9–48]. Furthermore, the impact of microbial activity on the degradation of complex organic matter (i.e. polymers) adds to the need to evaluate their catalytic impact on waste cell redox potential [Askarieh MM, Chambers AV, Daniel FBD, FitzGerald PL, Holtom GJ, Pilkington NJ, Reesb JH (2000) The chemical and microbial degradation of cellulose in the near field of a repository for radioactive wastes. Waste Manag 20: 93–106]. Quantification of reaction dynamics in alkaline systems involving Fe(0), H2 or organic matter as electron donors and nitrates/sulphates (if present) as well as carbonates or water (and RN in their possibly oxidised form) as electron acceptors will have to consider a microbial catalysis. There are many analogues for testing simulation approaches for microbial catalysis of related redox reactions, but few are in alkaline systems. With H2 almost omnipresent as an energy source, essential and trace nutrients most likely present in the heterogeneous waste cell environment, with space and water available depending on depth, architecture and re-saturation, the high pH may become the most critical parameter controlling microbial activity in space and time. In this chapter, we will review the importance of oxyanions in the nuclear industry and their impact together with concrete, steel and organic matter on the redox state in the near field of a waste storage cell. Particular consideration will be given to the knowledge in relation to alcaliphilic microbial activity in some cases derived from existing natural analogues. Case studies will consider specific redox-sensitive radionuclides in both near surface and deep storage settings. This information will serve as input to two ongoing experimental endeavours dealing with the specific reaction of nitrate reduction by organic matter and/or H2 in the concrete cells for bituminous waste disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stumm W, Morgan JJ (1996) Aquatic chemistry; chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  2. Turner DR, Whitfield M, Dickson AG (1981) The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and at 1 atm pressure. Geochim Cosmochim Acta 45:855

    Article  Google Scholar 

  3. Grenthe I, Stumm W, Laaksoharju M, Nilsson A-C, Wikberg P (1992) Redox potentials and redox reactions in deep groundwater systems. Chem Geol 98:131–150

    Article  Google Scholar 

  4. Postma D (1990) Kinetics of nitrate reduction by detrital Fe(II)-silicates. Geochim Cosmochim Acta 54:903–908

    Article  Google Scholar 

  5. Kumar A, Rao TVV, Mukerjee SK, Vaidya VN (2006) Recycling of chemicals from alkaline waste generated during preparation of UO3 microspheres by sol–gel process. J Nucl Mater 350:254–263

    Article  Google Scholar 

  6. Nikitenko SI, Venault L, Pflieger R, Chave T, Bisel I, Moisy P (2010) Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review. Ultrason Sonochem 17:1033–1040

    Article  Google Scholar 

  7. Balbaud F, Fauvet P, Robin R (2010) La corrosion en milieu nitrique concentré. In: CEA-DEN (ed) La corrosion et l’altération des matériaux du nucléaire, Editions Le Moniteur, Saclay, pp 103–106

    Google Scholar 

  8. Truche L, Berger G (2010) Etude expérimentale de la réduction des nitrates en présence d’hydrogène et de trois différents types d’acier: acier carbone, inox 316L et Hastelloy C276; External technical document. Report number: D. RP.FSTR.1 0.0003, LMTG–Andra, Châtenay-Malabry

    Google Scholar 

  9. Biradar PM, Dhamole PB, Nair RR, Roy SB, Satpati SK, D’Souza SF, Lele SS, Pandit AB (2008) Long-term stability of biological denitrification process for high strength nitrate removal from wastewater of uranium industry. Environ Prog 27:365–372

    Article  Google Scholar 

  10. Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5:89–96

    Article  Google Scholar 

  11. K’Zhero R (1997) Boues bituminées: synthese des connaissances sur la coprécipitation des radionucléides sur la coprécipitation des radionucléides au cours du traitement des effluents liquides; Rapport. Report number: C.RP.AMAT.97-084, Andra, Châtenay-Malabry

    Google Scholar 

  12. Katsounaros I, Dortsiou M, Kyriacou G (2009) Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes. J Hazard Mater 171:323–327

    Article  Google Scholar 

  13. Bauer C, Londe L (2008) Conception, construction et fermeture d’alvéoles de stockage MAVL; Dossier 2009. Report number: C.NSY.ASTE.08.0166, Andra, Châtenay-Malabry

    Google Scholar 

  14. Gaucher E, Blanc P, Bardot F, Braibant G, Buschaert S, Crouzet C, Gautier A, Girard J-P, Jacquot E, Lassin A, Négrel G, Tournassat C, Vinsot A, Altmann S (2006) Modelling the porewater chemistry of the Callovian-Oxfordian formation at a regional scale. Compt Rendus Geosci 29:55–77

    Google Scholar 

  15. Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  Google Scholar 

  16. Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482

    Article  Google Scholar 

  17. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park M-J, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, Costa MSd (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  Google Scholar 

  18. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    Google Scholar 

  19. Libert M, Pointeau I, Sellier, R (2011) Bactéries dénitrifiantes en milieu alcalin; Final report DEN/DTN/SMTM/LMTE/NT/2011/19 - CNTPSTR1 20008, CEA Cadarache

    Google Scholar 

  20. Lerouge C, Grangeon S, Gaucher EC, Tournassat C, Agrinier P, Guerrot C, Widory D, Fléhoc C, Willea G, Ramboz C, Vinsot A, Buschaert S (2011) Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian–Oxfordian clayey formation of Bure (France). Geochim Cosmochim Acta 75:2633–2663

    Article  Google Scholar 

  21. Perdrial JN, Warr LN, Perdrial N, Lett M-C, Elsass F (2009) Interaction between smectite and bacteria: implications for bentonite as backfill material in the disposal of nuclear waste. Chem Geol 264:281–294

    Article  Google Scholar 

  22. Stroes-Gascoyne S, Pedersen K, Haveman SA, Daumas S, Hamon CJ, Arlinger J, Ekendahl S, Hallbeck L, Gahroni N, Delaney TL, Dekeyser K (1997) Occurrence and identification of microorganisms in compacted clay-based buffer material designed for use in a nuclear fuel waste disposal vault. Can J Microbiol 43:1133–1146

    Article  Google Scholar 

  23. OECD – NEA (1985) The effects of natural organic compounds and of microorganisms on radionuclide transport, NEA Workshop. Radioactive Waste Management Committee, Paris

    Google Scholar 

  24. Francis AJ, Dobbs S, Doering RF (1980) Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste. Nucl Chem Waste Manag 1:153–159

    Article  Google Scholar 

  25. Askarieh MM, Chambers AV, Daniel FBD, FitzGerald PL, Holtom GJ, Pilkington NJ, Reesb JH (2000) The chemical and microbial degradation of cellulose in the near field of a repository for radioactive wastes. Waste Manage 20:93–106

    Article  Google Scholar 

  26. Gaucher EC, Blanc P (2006) Cement/clay interactions – a review: experiments, natural analogues, and modeling. Waste Manage 26:776–788

    Article  Google Scholar 

  27. Trotignon L, Rose J, Khoury H, Milodowski A, Bienvenu P, Provitina O, Mercier F, Susini J (2006) Rhenium migration at the Maqarin natural analogue site (Jordan). Radiochim Acta 9–11:755–761

    Article  Google Scholar 

  28. Pedersen K, Nilsson E, Arlinger J, Hallbeck L, ONeill A (2004) Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles 8:151–164

    Article  Google Scholar 

  29. Dayal R, Reardon EJ (1994) Carbon-14 behaviour in a cement-dominated environment: implications for spent candu resin waste disposal. Waste Manage 14:457–466

    Article  Google Scholar 

  30. Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58:367–395

    Article  Google Scholar 

  31. Diabaté S, Strack S (1997) Organically bound tritium in wheat after short-term exposure to atmospheric tritium under laboratory conditions. J Environ Radioact 36:157–175

    Article  Google Scholar 

  32. Lechner S, Conrad R (1997) Detection in soil of aerobic hydrogen-oxidizing bacteria related to Alcaligenes eutrophus by PCR and hybridization assays targeting the gene of the membrane-bound (NiFe) hydrogenase. FEMS Microbiol Ecol 22:193–206

    Article  Google Scholar 

  33. Belot Y, Watkins BM, Edlund O, Galeriu D, Guinois G, Golubev AV, Meurville C, Raskob W, Täschner M, Yamazawa H (2005) Upward movement of tritium from contaminated groundwaters: a numerical analysis. J Environ Radioact 84:259–270

    Article  Google Scholar 

  34. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Mol Biol Rev 55:259–287

    Google Scholar 

  35. De Cannière P, Maes A, Williams S, Bruggeman C, Beauwens T, Maes N, Cowper M (2010) Behaviour of selenium in boom clay. State-of-the-art report; Report. Report number: ER-120, SCK•CEN, Mol

    Google Scholar 

  36. Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  Google Scholar 

  37. Chung J, Nerenberg R, Rittmann BE (2006) Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 40:1664–1671

    Article  Google Scholar 

  38. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:1337–1346

    Article  Google Scholar 

  39. Oremland RS, Blum JS, Bindi AB, Dowdle PR, Herbel M, Stolz JF (1999) Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria. Appl Environ Microbiol 65:4385–4392

    Google Scholar 

  40. West JM, McKinley IG, Bateman K (2008) The microbiology of redox processes – development of a redox model; Open report. Report number: OR/08/076, British Geological Survey

    Google Scholar 

  41. Artinger R, Krenzler B, Schüssler W, Kim JI (1998) Effects of humic substances on the migration in a sandy aquifer: column experiments with Gorleben groundwater/sediment systems. J Contam Hydrol 35:261–275

    Article  Google Scholar 

  42. Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in groundwater at the Nevada Test Site. Nature 397:56–59

    Article  Google Scholar 

  43. Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509

    Google Scholar 

  44. Filip Z, Claus H, Dippell G (1998) Abbau von Huminstoffen durch Bodenmikroorganismen – eine Übersicht. Z Pflanzenernähr Bodenk 161:605–612

    Article  Google Scholar 

  45. Small J, Steele H, Eden L (2008b) Biogeochemical modelling of a bituminous waste storage cell and impact on nitrate transport; final report. Report number: Andra C RP FSTR 08.0008, Nexia Solutions, Risley, Warrington

    Google Scholar 

  46. Small J, Nykyri M, Helin M, Hovi U, Sarlin T, Itävaara M (2008) Experimental and modelling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste. Appl Geochem 23:1383–1418

    Article  Google Scholar 

  47. Andra (2005a) Dossier 2005 Argile – Tome Architecture et Gestion du stockage géologique. Report number: C.RP.ADP.04.0001B, Andra, Châtenay-Malabry

    Google Scholar 

  48. Andra (2005b) Modèle d’Inventaire de Dimensionnement (MID) – Données descriptives du colis type B2; Note technique. Report number: C.NT.AHVL.02.0114B, Andra, Châtenay-Malabry

    Google Scholar 

  49. Alquier M, Jacquemet N, Bertron A, Erable B, Sablayrolles C, Albasi C, Basseguy R, Escadeillas G, Strehaiano P, Vignoles M (2012) Etudes expérimentales de la réactivité des nitrates à l’interface bitume – eau cimentaire – ciment en conditions biotiques; Final Report. LGC - LMDC - LCA, Université de Toulouse

    Google Scholar 

  50. Magniont C, Coutand M, Bertron A, Cameleyre X, Escadeillas G, Lafforgue C, Beaufort S (2009) Test method for evaluating biologically induced degradations of cementitious materials in agroindustrial environments. Concrete in aggressive aqueous environments, performance, testing and modeling, Toulouse, pp 344–355

    Google Scholar 

  51. Hoehler TM (2005) Biogeochemistry of dihydrogen (H2). In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in biological systems. Taylor & Francis, Boca Raton, FL, pp 9–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Albrecht, A., Bertron, A., Libert, M. (2013). Microbial Catalysis of Redox Reactions in Concrete Cells of Nuclear Waste Repositories: A Review and Introduction. In: Bart, F., Cau-di-Coumes, C., Frizon, F., Lorente, S. (eds) Cement-Based Materials for Nuclear Waste Storage. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3445-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3445-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3444-3

  • Online ISBN: 978-1-4614-3445-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics