Image Processing and Pattern Recognition with Interval Type-2 Fuzzy Inference Systems



Interval type-2 fuzzy systems can be of great help in achieving efficient image processing and pattern recognition applications. In particular, edge detection is an operation usually applied to image sets before the training phase in recognition systems. This preprocessing step helps to extract the most important shapes in an image, ignoring the homogeneous regions and remarking the real objective to classify or recognize. Many traditional and fuzzy edge detectors have been proposed, but it is very difficult to demonstrate which one is better before the recognition results are obtained. In this chapter, we present experimental results where several edge detectors were used to preprocess the same image sets. Each resultant image set was used as training data for a neural network recognition system, and the recognition rates were compared. The goal of these experiments is to find the better edge detector that can be used to improve the training data of a neural network for image recognition.


Interval type-2 fuzzy systems Image processing Pattern recognition Edge detection 


  1. 1.
    A.N. Evans, X.U. Liu, Morphological gradient approach for color edges detection. IEEE Trans. Image Process. 15(6), 1454–1463 (2006)CrossRefGoogle Scholar
  2. 2.
    A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)CrossRefGoogle Scholar
  3. 3.
    AT & T Laboratories Cambridge, The ORL database of faces, Accessed 9 Dec 2013
  4. 4.
    F. Russo, G. Ramponi, Edge extraction by FIRE operators fuzzy systems. IEEE World Congr. Comput. Intell., 1, 249–253 (1994)Google Scholar
  5. 5.
    H. Bustince, E. Berrenechea, M. Pagola, J. Fernandez, Interval-Valued Fuzzy Sets Constructed from Matrices: Application to Edge Detection, Fuzzy Sets and Systems (Elsevier), Accessed 13 Dec 2013
  6. 6.
    J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems : Introduction and New Directions (Prentice-Hall, Upper Saddle River, 2001)Google Scholar
  7. 7.
    J.R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. Transactions on Computational Science, vol. 4750 (Springer, Heidelberg, 2008), pp. 104–114Google Scholar
  8. 8.
    K. Revathy, S. Lekshmi, S.R. Prabhakaran Nayar, Fractal-based fuzzy technique for detection of active regions from solar. J. Solar Phys. 228, 43–53 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Suzuki, I. Horiba, N. Sugie, M. Nanki, Contour extraction of left ventricular cavity from digital subtraction angiograms using a neural edge detector. Syst. Comput. Jpn., 55–69 (2003)Google Scholar
  10. 10.
    K.C. Lee, J. Ho, D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell., 27(5), 684–698 (2005)CrossRefGoogle Scholar
  11. 11.
    L. Hua, H.D. Cheng, Ming Zhanga, A high performance edge detector based on fuzzy inference rules. Int. J. Inf. Sci. 177(21), 4768–4784 (2007) (Elsevier, New York)Google Scholar
  12. 12.
    M. Heath, S. Sarkar, T. Sanocki, K.W. Bowyer, A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1338–1359 (1997)CrossRefGoogle Scholar
  13. 13.
    O. Mendoza, P. Melin, The fuzzy Sugeno integral as a decision operator in the recognition of images with modular neural networks. Hybrid Intelligent Systems (Springer, Germany, 2007), pp. 299–310Google Scholar
  14. 14.
    O. Mendoza, P. Melin, G. Licea, A new method for edge detection in image processing using interval type-2 fuzzy logic. IEEE International Conference on Granular Computing (GRC 2007) (Silicon Valley, 2007)Google Scholar
  15. 15.
    O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the sugeno integral. Inf. Sci. 179(13), 2078–2101 (2007) (Elsevier, New York)CrossRefGoogle Scholar
  16. 16.
    O. Mendoza, P. Melin, G. Licea, Fuzzy inference systems type-1 and type-2 for digital images edges detection. Eng. Lett., Int. Assoc. Eng., E.U.A., 15(1) (2007)
  17. 17.
    O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for module relevance estimation in Sugeno integration of modular neural networks. Soft Computing for Hybrid Intelligent Systems (Springer, Germany, 2008), pp. 115–127.Google Scholar
  18. 18.
    O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(3), 2078–2101 (2008) (Elsevier)Google Scholar
  19. 19.
    O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24(11), 1115–1134 (2009) (Wiley, New York)CrossRefMATHGoogle Scholar
  20. 20.
    O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. J. 9(4), 1377–1387 (2009)CrossRefGoogle Scholar
  21. 21.
    O. Mendoza, P. Melin, O. Castillo, G. Licea, Type-2 fuzzy logic for improving training data and response integration in modular neural networks for image recognition. Foundations of Fuzzy Logic and Soft Computing (LNCS) (Springer, Germany, 2007), pp. 604–612Google Scholar
  22. 22.
    P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  23. 23.
    Y. Yitzhaky, E. Peli, A method for objective edge detection evaluation and detector parameter selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1027–1033 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2015

Authors and Affiliations

  1. 1.Division of Graduate Studies and ResearchTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations