Bio-Inspired Optimization of Interval Type-2 Fuzzy Controller Design

Chapter

Abstract

This chapter presents a general framework for designing interval type-2 fuzzy controllers based on bio-inspired optimization techniques. The problem of designing optimal type-2 fuzzy controllers for complex nonlinear plants under uncertain environments is of crucial importance in achieving good results for real-world applications. Traditional approaches have been using genetic algorithms or trial and error approaches; however, results tend to be not optimal or require very large design times. More recently, bio-inspired optimization techniques, like ant colony optimization or particle swarm intelligence, have also been applied on optimal design of fuzzy controllers. In this chapter, we show how bio-inspired optimization techniques can be used to obtain results that outperform traditional approaches in the design of optimal type-2 fuzzy controllers.

Keywords

Interval type-2 fuzzy logic Fuzzy control Bio-inspired optimization 

References

  1. 1.
    L. Astudillo, P. Melin, O. Castillo, A new optimization method base on a paradigm inspired by nature. Stud. Comput. Intell. 312, 277–283 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Biglarbegian, W.W. Melek, J.M. Mendel, Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans. Industrial Electronics 58, 1371–1384 (2011)CrossRefGoogle Scholar
  3. 3.
    Z. Bingül, O. Karahan, A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst. Appl. 38, 1017–1031 (2011)CrossRefGoogle Scholar
  4. 4.
    O. Castillo, P. Melin, Type-2 Fuzzy Logic: Theory and Applications (Springer, Heidelberg, 2008)Google Scholar
  5. 5.
    O. Castillo, A.I. Martinez, A.C. Martinez, Evolutionary computing for topology optimization of type-2 fuzzy systems. Adv. Soft Comput. 41, 63–75 (2007)CrossRefGoogle Scholar
  6. 6.
    O. Castillo, G. Huesca, F. Valdez, Evolutionary computing for topology optimization of type-2 fuzzy controllers. Stud. Fuzziness Soft Comput. 208, 163–178 (2008)CrossRefGoogle Scholar
  7. 7.
    O. Castillo, L.T. Aguilar, N.R. Cazarez-Castro, S. Cardenas, Systematic design of a stable type-2 fuzzy logic controller. Appl. Soft Comput. J. 8, 1274–1279 (2008)CrossRefGoogle Scholar
  8. 8.
    O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inform. Sci. (2011)Google Scholar
  9. 9.
    J.R. Castro, O. Castillo, P. Melin, An interval type-2 fuzzy logic toolbox for control applications, in Proceedings of FUZZ-IEEE, London, 2007, pp. 1–6Google Scholar
  10. 10.
    J.R. Castro, O. Castillo, L.G. Martinez, Interval type-2 fuzzy logic toolbox. Eng. Lett. 15(1), 14 (2007)Google Scholar
  11. 11.
    J.R. Castro, O. Castillo, P. Melin, L.G. Martinez, S. Escobar, I. Camacho, Building fuzzy inference systems with the interval type-2 fuzzy logic toolbox. Adv. Soft Comput. 41, 53–62 (2007)CrossRefGoogle Scholar
  12. 12.
    J.R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inform. Sci. 179, 2175–2193 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    N.R. Cazarez-Castro, L.T. Aguilar, O. Castillo, Hybrid genetic-fuzzy optimization of a type-2 fuzzy logic controller, in Proceedings of the 8th International Conference on Hybrid Intelligent Systems, HIS 2008, Barcelona, 2008, pp. 216–221Google Scholar
  14. 14.
    L. Cervantes, O. Castillo, Design of a fuzzy system for the longitudinal control of an F-14 airplane. Stud. Comput. Intell. 318, 213–224 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Chaoui, W. Gueaieb, Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Robot. Syst. 51, 159–186 (2008)CrossRefGoogle Scholar
  16. 16.
    O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Set. Syst. 141, 5–31 (2004)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    T. Dereli, A. Baykasoglu, K. Altun, A. Durmusoglu, I.B. Turksen, Industrial applications of type-2 fuzzy sets and systems: a concise review. Comput. Ind. 62, 125–137 (2011)CrossRefGoogle Scholar
  18. 18.
    A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, England, 2005)Google Scholar
  19. 19.
    M. Galluzzo, B. Cosenza, Adaptive type-2 fuzzy logic control of a bioreactor. Chem. Eng. Sci. 65, 4208–4221 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Hagras, Hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Hsiao, T.H.S. Li, J.Z. Lee, C.H. Chao, S.H. Tsai, Design of interval type-2 fuzzy sliding-mode controller. Inform. Sci. 178, 1686–1716 (2008)CrossRefMathSciNetGoogle Scholar
  22. 22.
    H.C. Huang, C.M. Chu, J.S. Pan, The optimized copyright protection system with genetic watermarking. Soft Comput. 13, 333–343 (2009)CrossRefGoogle Scholar
  23. 23.
    C.-F. Juang, C.-H. Hsu, Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control. IEEE Trans. Industrial Electronics 56, 3931–3940 (2009)CrossRefGoogle Scholar
  24. 24.
    C.-F. Juang, C.-H. Hsu, Reinforcement interval type-2 fuzzy controller design by online rule generation and Q-value-aided ant colony optimization. IEEE Trans. Syst. Man Cybern. B 39, 1528–1542 (2009)CrossRefGoogle Scholar
  25. 25.
    C.-F. Juang, C.-H. Hsu, C.-F. Chuang, Reinforcement self-organizing interval type-2 fuzzy system with ant colony optimization, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, 2009, pp. 771–776Google Scholar
  26. 26.
    W.-D. Kim, H.-J. Jang, S.-K. Oh, The design of optimized fuzzy cascade controller: focused on type-2 fuzzy controller and HFC-based genetic algorithms. Trans. Korean Inst. Electr. Eng. 59, 972–980 (2010)Google Scholar
  27. 27.
    G.O. Koca, Z.H. Akpolat, M. Özdemir, Type-2 fuzzy sliding mode control of a four-bar mechanism. Int. J. Model. Simul. 31, 60–68 (2011)Google Scholar
  28. 28.
    R. Martinez, O. Castillo, L.T. Aguilar, Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inform. Sci. 179, 2158–2174 (2009)CrossRefMATHGoogle Scholar
  29. 29.
    R. Martinez, A. Rodriguez, O. Castillo, L.T. Aguilar, Type-2 fuzzy logic controllers optimization using genetic algorithms and particle swarm optimization, in Proceedings of the IEEE International Conference on Granular Computing, GrC 2010, 2010, pp. 724–727Google Scholar
  30. 30.
    R. Martinez-Marroquin, O. Castillo, J. Soria, Parameter tuning of membership functions of a type-1 and type-2 fuzzy logic controller for an autonomous wheeled mobile robot using ant colony optimization, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, 2009, pp. 4770–4775Google Scholar
  31. 31.
    P. Melin, O. Castillo, A new method for adaptive control of non-linear plants using Type-2 fuzzy logic and neural networks. Int. J. Gen. Syst. 33, 289–304 (2004)CrossRefMATHGoogle Scholar
  32. 32.
    P. Melin, O. Castillo, An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inform. Sci. 177, 1543–1557 (2007)CrossRefGoogle Scholar
  33. 33.
    J.M. Mendel, Uncertainty, fuzzy logic, and signal processing. Signal Process. J. 80, 913–933 (2000)CrossRefMATHGoogle Scholar
  34. 34.
    S.M.A. Mohammadi, A.A. Gharaveisi, M. Mashinchi, An evolutionary tuning technique for type-2 fuzzy logic controller in a non-linear system under uncertainty, in Proceedings of the 18th Iranian Conference on Electrical Engineering, ICEE, 2010, pp. 610–616Google Scholar
  35. 35.
    K.J. Poornaselvan, T. Gireesh Kumar, V.P. Vijayan, Agent based ground flight control using type-2 fuzzy logic and hybrid ant colony optimization to a dynamic environment, in Proceedings of the 1st International Conference on Emerging Trends in Engineering and Technology, ICETET 2008, 2008, pp. 343–348Google Scholar
  36. 36.
    J.T. Starczewski, Efficient triangular type-2 fuzzy logic systems. Int. J. Approx. Reason. 50, 799–811 (2009)CrossRefMATHGoogle Scholar
  37. 37.
    K.R. Sudha, R. Vijaya Santhi, Robust decentralized load frequency control of interconnected power system with generation rate constraint using type-2 fuzzy approach. Int. J. Elec. Power 33, 699–707 (2011)CrossRefGoogle Scholar
  38. 38.
    C. Wagner, H. Hagras, A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots, in Proceedings of the IEEE Conference on Fuzzy Systems, London, 2007Google Scholar
  39. 39.
    C. Wagner, H. Hagras, Evolving type-2 fuzzy logic controllers for autonomous mobile robots. Adv. Soft Comput. 41, 16–25 (2007)CrossRefGoogle Scholar
  40. 40.
    C.-H. Wang, C.-S. Cheng, T.-T. Lee, Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. B 34(3), 1462–1477 (2004)CrossRefGoogle Scholar
  41. 41.
    D. Wu, W.-W. Tan, A type-2 fuzzy logic controller for the liquid level process, in Proceedings of the IEEE Conference on Fuzzy Systems, Budapest, 2004, pp. 953–958Google Scholar
  42. 42.
    D. Wu, W.-W. Tan, Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artificial Intell. 19, 829–841 (2006)CrossRefGoogle Scholar
  43. 43.
    R.R. Yager, Fuzzy subsets of type II in decisions. J. Cybern. 10, 137–159 (1980)CrossRefMathSciNetGoogle Scholar
  44. 44.
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. 8, 43–80 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2015

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations