Skip to main content

Mitochondrion- and Endoplasmic Reticulum-Induced SK Channel Dysregulation as a Potential Origin of the Selective Neurodegeneration in Parkinson’s Disease

  • Chapter
  • First Online:
Systems Biology of Parkinson's Disease

Abstract

Mitochondrial dysfunction and metabolic issues are known to have strong implications in the pathogenesis of Parkinson’s disease (PD). But it is also known that the neuronal loss leading to PD symptoms is selective for particular areas of the brain (see Chap. 1). In particular, the characteristic motor symptoms of PD are mainly due to abnormal neuronal activity in the basal ganglia, through the degeneration of substantia nigra pars compacta (SNc), but not ventral tegmental area (VTA), dopaminergic (DA) neurons. How a metabolic dysfunction triggers such a selective loss is considered from a range of perspectives in several contributions to this volume. The aim of this chapter is to investigate the potential role of small conductance calcium-activated potassium (SK) channels in this selective degeneration.

Based on a recently proposed model and experimental data, we underline the fundamental role of SK channels in regulating the excitability of SNc DA neurons. The fact that SK channels do not play this regulating role in VTA DA neurons suggests the hypothesis that one reason for the preferential vulnerability of SNc DA neurons in Parkinson’s disease is that SK channels, which have a profound influence on their firing physiologically, are dysregulated by a dysfunction of mitochondria and/or endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1267

    Google Scholar 

  2. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem 55:2142–2145

    Article  PubMed  CAS  Google Scholar 

  3. Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115:333–342

    Article  PubMed  Google Scholar 

  4. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163:1450–1455

    Article  PubMed  CAS  Google Scholar 

  5. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  6. Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2:49

    Article  PubMed  CAS  Google Scholar 

  7. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  PubMed  CAS  Google Scholar 

  8. Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  PubMed  CAS  Google Scholar 

  9. Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci U S A 108:12937–12942

    Article  PubMed  CAS  Google Scholar 

  10. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:676–680

    Article  Google Scholar 

  11. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism-selective destruction of dopaminergic-neurons in the pars compacta of the substantia nigra by n-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550

    Article  PubMed  CAS  Google Scholar 

  12. Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82:2173–2177

    Article  PubMed  CAS  Google Scholar 

  13. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  14. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 64:646–661

    Article  Google Scholar 

  15. Bezard E, Przedborski S (2011) A tale on animal models of Parkinson’s disease. Mov Disord 26:993–1002

    Article  PubMed  Google Scholar 

  16. Martinez TN, Greenamyre JT (2012) Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid Redox Signal. 16:920–934

    Google Scholar 

  17. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2002) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  Google Scholar 

  18. Braak H, de Vos RA, Bohl J, Del Tredici K (2005) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    Article  PubMed  Google Scholar 

  19. Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559

    Article  PubMed  Google Scholar 

  20. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  21. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661

    Article  PubMed  CAS  Google Scholar 

  22. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751

    Article  PubMed  CAS  Google Scholar 

  23. Lu L, Neff F, Fischer DA, Henze C, Hirsch EC, Oertel WH, Schlegel J, Hartmann A (2006) Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: a post-mortem study in human control subjects. Neurobiol Dis 23:409–421

    Article  PubMed  CAS  Google Scholar 

  24. González-Hernández T, Afonso-Oramas D, Cruz-Muros I (2009) Phenotype, compartmental organization and differential vulnerability of nigral dopaminergic neurons. J Neural Transm Suppl 73:21–37

    PubMed  Google Scholar 

  25. González-Hernández T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro-Hernandez J (2010) Vulnerability of mesostriatal dopaminergic neurons in Parkinson’s disease. Front Neuroanat 4:140

    Article  PubMed  Google Scholar 

  26. Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6:933–938

    Article  PubMed  CAS  Google Scholar 

  27. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  28. Guzman JN, Sánchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29:11011–11019

    Article  PubMed  CAS  Google Scholar 

  29. Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256

    Article  PubMed  CAS  Google Scholar 

  30. Chan CS, Gertler TS, Surmeier DJ (2010) A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease. Mov Disord 25(Suppl 1):S63–S68

    Article  PubMed  Google Scholar 

  31. Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium 47:175–182

    Article  PubMed  CAS  Google Scholar 

  32. Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2010) What causes the death of dopaminergic neurons in Parkinson’s disease? Prog Brain Res 183:59–77

    Article  PubMed  CAS  Google Scholar 

  33. Ilijic E, Guzman JN, Surmeier DJ (2011) The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol Dis 43:364–369

    Article  PubMed  CAS  Google Scholar 

  34. Calì T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37:228–240

    Article  PubMed  Google Scholar 

  35. Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, Matsumoto K, Hatzoglou M, Jin H, Feng Z (2011) Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One 6(8):e22354

    Article  PubMed  CAS  Google Scholar 

  36. Wang HQ, Takahashi R (2007) Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid Redox Signal 9:553–561

    Article  PubMed  CAS  Google Scholar 

  37. Arduíno DM, Esteves AR, Cardoso SM, Oliveira CR (2009) Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson’s disease. Neurochem Int 55:341–348

    Article  PubMed  Google Scholar 

  38. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2864–2876

    Google Scholar 

  39. Brazhnik E, Shah F, Tepper JM (2008) GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J Neurosci 28:10386–10398

    Article  PubMed  CAS  Google Scholar 

  40. Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645–656

    Article  PubMed  CAS  Google Scholar 

  41. Putzier I, Kullmann PH, Horn JP, Levitan ES (2009) Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J Neurosci 29:15414–15419

    Article  PubMed  CAS  Google Scholar 

  42. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    PubMed  CAS  Google Scholar 

  43. Schumacher MA, Rivard AF, Bächinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    Article  PubMed  CAS  Google Scholar 

  44. Maylie J, Bond CT, Herson PS, Lee WS, Adelman JP (2004) Small conductance Ca2+-activated K+ channels and calmodulin. J Physiol 554:255–261

    Article  PubMed  CAS  Google Scholar 

  45. Köhler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714

    Article  PubMed  Google Scholar 

  46. Vogalis F, Storm JF, Lancaster B (2003) SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur J Neurosci 18:3155–3164

    Article  PubMed  Google Scholar 

  47. Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8:550

    Article  Google Scholar 

  48. Shepard PD, Bunney BS (1988) Effect of apamin on the discharge properties of putative dopamine-containing neurons in vitro. Brain Res 463:380–384

    Article  PubMed  CAS  Google Scholar 

  49. Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca2+-activated K+ conductance. Exp Brain Res 86:141–150

    Article  PubMed  CAS  Google Scholar 

  50. Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omegaconotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 464:707–747

    Google Scholar 

  51. Seutin V, Johnson SW, North RA (1993) Apamin increases NMDA-induced burst firing of rat mesencephalic dopamine neurons. Brain Res 630:341–344

    Article  PubMed  CAS  Google Scholar 

  52. Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V (2005) SK channel control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22:3111–3121

    Article  PubMed  Google Scholar 

  53. Ji H, Hougaard C, Herrik KF, Strøbaek D, Christophersen P, Shepard PD (2009) Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Eur J Neurosci 29:1883–1895

    Article  PubMed  Google Scholar 

  54. Herrik KF, Christophersen P, Shepard PD (2010) Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo. J Neurophysiol 104:1706–1735

    Article  Google Scholar 

  55. Drion G, Massotte L, Sepulchre R, Seutin V (2010) How modeling can reconcile apparently discrepant experimental results: the case of dopaminergic neurons. PLoS Comput Biol 7(5):e1002050

    Article  Google Scholar 

  56. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  57. Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306

    Article  PubMed  CAS  Google Scholar 

  58. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA, pp 95–129

    Google Scholar 

  59. Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456

    PubMed  CAS  Google Scholar 

  60. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT, Cambridge, MA, pp 325–378

    Google Scholar 

  61. Noble D (1984) The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol 353:1–50

    PubMed  CAS  Google Scholar 

  62. Noma A (1996) Ionic mechanisms of the cardiac pacemaker potential. Jpn Heart J 37:653–682

    Article  Google Scholar 

  63. Blythe SN, Wokosin D, Atherton JF, Bevan MD (2009) Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. J Neurosci 29:15531–15541

    Article  PubMed  CAS  Google Scholar 

  64. Lobb CJ, Wilson CJ, Paladini CA (2010) A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 104:403–413

    Article  PubMed  CAS  Google Scholar 

  65. Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304

    Article  PubMed  CAS  Google Scholar 

  66. Sarpal D, Koenig JI, Adelman JP, Brady D, Prendeville LC, Shepard PD (2004) Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Synapse 53:104–113

    Article  PubMed  CAS  Google Scholar 

  67. Bishop MW, Chakraborty S, Matthews GA, Dougalis A, Wood NW, Festenstein R, Ungless MA (2010) Hyperexcitable substantia nigra dopamine neurons in PINK1- and HtrA2/Omi-deficient mice. J Neurophysiol 104:3009–3020

    Article  PubMed  CAS  Google Scholar 

  68. Yanovsky Y, Zhang W, Misgeld U (2005) Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata. Neuroscience 136:1027–1036

    Article  PubMed  CAS  Google Scholar 

  69. Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5:758–768

    Article  PubMed  CAS  Google Scholar 

  70. Scuvée-Moreau J, Waroux O, Alleva L, Boland A, Graulich A, Liégeois JF, SeutinV (2005) T-type calcium channels do not play a major role in the activation of SK channels in rat midbrain dopaminergic neurons. Program No. 376.13. 2005 Neuroscience Meeting Planner. Society for Neuroscience, Washington, DC, 2005. Online

    Google Scholar 

  71. Friel D (2004) Interplay between ER Ca2+ uptake and release fluxes in neurons and its impact on [Ca2+] dynamics. Biol Res 37:645–674

    Article  Google Scholar 

  72. Coulon P, Herr D, Kanyshkova T, Meuth P, Budde T, Pape HC (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46:333–346

    Article  PubMed  CAS  Google Scholar 

  73. Lee KH, Cho JH, Choi IS, Park HM, Lee MG, Choi BJ, Jang IS (2010) Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release. Neuroscience 169:106–116

    Article  Google Scholar 

  74. Barsukova AG, Bourdette D, Forte M (2011) Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci 34:437–447

    Article  PubMed  Google Scholar 

  75. Steigerwald F, Pötter M, Herzog J, Pinsker M, Kopper F, Mehdorn H, Deuschl G, Volkmann J (2008) Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. J Neurophysiol 100:2515–2524

    Article  PubMed  CAS  Google Scholar 

  76. Duda JE (2009) Olfactory system pathology as a model of Lewy neurodegenerative disease. J Neurol Sci 289:49–54

    Article  PubMed  Google Scholar 

  77. Huot P, Fox SH, Brotchie JM (2011) The serotonergic system in Parkinson’s disease. Prog Neurobiol 95(2):163–212

    Article  PubMed  CAS  Google Scholar 

  78. Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 23:7525–7542

    PubMed  CAS  Google Scholar 

  79. Maher BJ, Westbrook GL (2005) SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb. J Neurophysiol 94:3743–3750

    Article  PubMed  CAS  Google Scholar 

  80. Rouchet N, Waroux O, Lamy C, Massotte L, Scuvée-Moreau J, Liégeois JF, Seutin V (2008) SK channel blockade promotes burst firing in dorsal raphe serotonergic neurons. Eur J Neurosci 28:1108–1115

    Article  PubMed  Google Scholar 

  81. Sah P, McLachlan EM (1992) Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68:1834–1841

    PubMed  CAS  Google Scholar 

  82. Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F (2001) Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 281:C1727–C1733

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grant 9.4560.03 from the F.R.S.-FNRS (V.S.) and by two grants from the Belgian Science Policy (IAP6/31 (V.S.) and IAP6/4 (R.S.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Drion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drion, G., Seutin, V., Sepulchre, R. (2012). Mitochondrion- and Endoplasmic Reticulum-Induced SK Channel Dysregulation as a Potential Origin of the Selective Neurodegeneration in Parkinson’s Disease. In: Wellstead, P., Cloutier, M. (eds) Systems Biology of Parkinson's Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3411-5_4

Download citation

Publish with us

Policies and ethics