Cardiovascular System

  • Virginia E. Wotring
Part of the SpringerBriefs in Space Development book series (BRIEFSSPACE)


The cardiovascular (CV) system is responsible for the circulation of blood to all body tissues. The absence of Earth’s gravity removes a significant force against which our bodies usually have to work; much of our normal exertion goes toward remaining upright and balanced in gravity (Sockol et al. 2007). During spaceflight, this need is removed, and the muscles of the body, including the heart, don’t have to work so hard. In general the CV system adapts well to spaceflight, but some problems have been encountered in our space travel history. Just as on Earth, the CV system responds well to exercise and not well to extended breaks from exercise. Orthostatic intolerance and cardiovascular deconditioning are problems for many of our returning crewmembers. These risks have been recently reviewed in the Risk Reports from the Cardiovascular Discipline (Platts 2008); only recent findings and those particular to pharmacological therapies will be presented here.


Orthostatic Hypotension Parabolic Flight Orthostatic Intolerance Increase Plasma Volume Cardiovascular Deconditioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. M.A. Bayorh, R.R. Socci et al., L-NAME, a nitric oxide synthase inhibitor, as a potential countermeasure to post-suspension hypotension in rats. Clin. Exp. Hypertens. 23(8), 611–622 (2001)CrossRefGoogle Scholar
  2. J. Broskey, M.K. Sharp, Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model. Ann. Biomed. Eng. 35(10), 1800–1811 (2007)CrossRefGoogle Scholar
  3. J.C. Buckey Jr., L.D. Lane et al., Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81(1), 7–18 (1996)Google Scholar
  4. M.W. Bungo, J.B. Charles et al., Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat. Space Environ. Med. 56(10), 985–990 (1985)Google Scholar
  5. J.B. Charles, M.W. Bungo, Cardiovascular physiology in space flight. Exp. Gerontol. 26(2–3), 163–168 (1991)CrossRefGoogle Scholar
  6. V.A. Convertino, D.A. Ludwig et al., Effects of exposure to simulated microgravity on neuronal catecholamine release and blood pressure responses to norepinephrine and angiotensin. Clin. Auton. Res. 8(2), 101–110 (1998)CrossRefGoogle Scholar
  7. D.S. D’Aunno, A.H. Dougherty et al., Effect of short- and long-duration spaceflight on QTc intervals in healthy astronauts. Am. J. Cardiol. 91(4), 494–497 (2003)CrossRefGoogle Scholar
  8. L.R. Davrath, R.W. Gotshall et al., Moderate sodium restriction does not alter lower body negative pressure tolerance. Aviat. Space Environ. Med. 70(6), 577–582 (1999)Google Scholar
  9. FDA. (2010), Midodrine hydrochloride: FDA proposes withdrawal of low blood pressure drug,
  10. M.A. Frey, J. Riddle et al., Blood and urine responses to ingesting fluids of various salt and glucose concentrations. J. Clin. Pharmacol. 31(10), 880–887 (1991)Google Scholar
  11. J.M. Fritsch-Yelle, U.A. Leuenberger et al., An episode of ventricular tachycardia during long-duration spaceflight. Am. J. Cardiol. 81(11), 1391–1392 (1998)CrossRefGoogle Scholar
  12. A. Gilman, T.W. Rall et al. (eds.), The Pharmacological Basis of Therapeutics (Pergamon Press, New York, 1990)Google Scholar
  13. J. Gisolf, R.V. Immink et al., Orthostatic blood pressure control before and after spaceflight, determined by time-domain baroreflex method. J. Appl. Physiol. 98(5), 1682–1690 (2005)CrossRefGoogle Scholar
  14. D. Grundy, K. Reid et al., Trans-thoracic fluid shifts and endocrine responses to 6 degrees head-down tilt. Aviat. Space Environ. Med. 62(10), 923–929 (1991)Google Scholar
  15. A. Guyton, J. Hall, Textbook of Medical Physiology (Elsevier Saunders, Philadelphia, 2006)Google Scholar
  16. A.R. Hargens, D.E. Watenpaugh, Cardiovascular adaptation to spaceflight. Med. Sci. Sports Exerc. 28(8), 977–982 (1996)CrossRefGoogle Scholar
  17. S. Herault, N. Tobal et al., Effect of human head flexion on the control of peripheral blood flow in microgravity and in 1 g. Eur. J. Appl. Physiol. 87(3), 296–303 (2002)CrossRefGoogle Scholar
  18. W. Hildebrandt, H.C. Gunga et al., Enhanced slow caudad fluid shifts in orthostatic intolerance after 24-h bed-rest. Eur. J. Appl. Physiol. Occup. Physiol. 69(1), 61–70 (1994)CrossRefGoogle Scholar
  19. C.M. Lathers, J.M. Riddle et al., Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight. J. Clin. Pharmacol. 33(6), 535–543 (1993)Google Scholar
  20. B.D. Levine, J.H. Zuckerman et al., Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation 96(2), 517–525 (1997)Google Scholar
  21. T. Mano, Autonomic neural functions in space. Curr. Pharm. Biotechnol. 6(4), 319–324 (2005)CrossRefGoogle Scholar
  22. T. Mano, S. Iwase, Sympathetic nerve activity in hypotension and orthostatic intolerance. Acta Physiol. Scand. 177(3), 359–365 (2003)CrossRefGoogle Scholar
  23. D.S. Martin, J.V. Meck, Presyncopal/non-presyncopal outcomes of post spaceflight stand tests are consistent from flight to flight. Aviat. Space Environ. Med. 75(1), 65–67 (2004)Google Scholar
  24. J.V. Meck, W.W. Waters et al., Mechanisms of postspaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am. J. Physiol. Heart Circ. Physiol. 286(4), H1486–H1495 (2004)CrossRefGoogle Scholar
  25. P.F. Migeotte, G.K. Prisk et al., Microgravity alters respiratory sinus arrhythmia and short-term heart rate variability in humans. Am. J. Physiol. Heart Circ. Physiol. 284(6), H1995–H2006 (2003)Google Scholar
  26. S.L. Mulvagh, J.B. Charles et al., Echocardiographic evaluation of the cardiovascular effects of short-duration spaceflight. J. Clin. Pharmacol. 31(10), 1024–1026 (1991)Google Scholar
  27. A. Pavy-Le Traon, M. Heer et al., From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur. J. Appl. Physiol. 101(2), 143–194 (2007)CrossRefGoogle Scholar
  28. M.A. Perhonen, F. Franco et al., Cardiac atrophy after bed rest and spaceflight. J. Appl. Physiol. 91(2), 645–653 (2001)Google Scholar
  29. C.D. Ramsdell, T.J. Mullen et al., Midodrine prevents orthostatic intolerance associated with simulated spaceflight. J. Appl. Physiol. 90(6), 2245–2248 (2001)Google Scholar
  30. C.A. Ray, New insights into orthostatic hypotension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294(5), R1575–R1576 (2008)CrossRefGoogle Scholar
  31. A.C. Rossum, M.L. Wood et al., Evaluation of cardiac rhythm disturbances during extravehicular activity. Am. J. Cardiol. 79(8), 1153–1155 (1997)CrossRefGoogle Scholar
  32. A.C. Rossum, M.G. Ziegler et al., Effect of spaceflight on cardiovascular responses to upright posture in a 77-year-old astronaut. Am. J. Cardiol. 88(11), 1335–1337 (2001)CrossRefGoogle Scholar
  33. I. Sayet, G. Neuilly et al., Influence of spaceflight, hindlimb suspension, and venous occlusion on alpha 1-adrenoceptors in rat vena cava. J. Appl. Physiol. 78(5), 1882–1888 (1995)Google Scholar
  34. J.M. Serrador, J.K. Shoemaker et al., Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight. Brain Res. Bull. 53(1), 113–120 (2000)CrossRefGoogle Scholar
  35. S.-J. Shi, S.H. Platts, et al.,Effects of midodrine, promethazine, and their combination on orthostatic intolerance in normal subjects. Aviat. Space Environ. Med., in reviewGoogle Scholar
  36. S.J. Shi, D.A. South et al., Fludrocortisone does not prevent orthostatic hypotension in astronauts after spaceflight. Aviat. Space Environ. Med. 75(3), 235–239 (2004)Google Scholar
  37. M. Shiraishi, M. Schou et al., Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans. J. Appl. Physiol. 92(1), 264–268 (2002)Google Scholar
  38. R.F. Smith, K. Stanton et al., Quantitative electrocardiography during extended space flight: the second manned Skylab mission. Aviat. Space Environ. Med. 47(4), 353–359 (1976)Google Scholar
  39. M.D. Sockol, D.A. Raichlen et al., Chimpanzee locomotor energetics and the origin of human bipedalism. Proc. Natl. Acad. Sci. USA 104(30), 12265–12269 (2007)ADSCrossRefGoogle Scholar
  40. R.L. Summers, D.S. Martin et al., Mechanism of spaceflight-induced changes in left ventricular mass. Am. J. Cardiol. 95(9), 1128–1130 (2005)CrossRefGoogle Scholar
  41. D.G. Thompson, A.S. Mason et al., Mineralocorticoid replacement in Addison’s disease. Clin. Endocrinol. (Oxf.) 10(5), 499–506 (1979)CrossRefGoogle Scholar
  42. B. Verheyden, J. Liu et al., Adaptation of heart rate and blood pressure to short and long duration space missions. Respir. Physiol. Neurobiol. 169(Suppl 1), S13–S16 (2009)CrossRefGoogle Scholar
  43. J. Vernikos, V.A. Convertino, Advantages and disadvantages of fludrocortisone or saline load in preventing post-spaceflight orthostatic hypotension. Acta Astronaut. 33, 259–266 (1994)CrossRefGoogle Scholar
  44. J. Vernikos, M.F. Dallman et al., Drug effects on orthostatic intolerance induced by bedrest. J. Clin. Pharmacol. 31(10), 974–984 (1991)Google Scholar
  45. D.E. Watenpaugh, S.F. Vissing et al., Pharmacologic atrial natriuretic peptide reduces human leg capillary filtration. J. Cardiovasc. Pharmacol. 26(3), 414–419 (1995)CrossRefGoogle Scholar
  46. W.W. Waters, S.H. Platts et al., Plasma volume restoration with salt tablets and water after bed rest prevents orthostatic hypotension and changes in supine hemodynamic and endocrine variables. Am. J. Physiol. Heart Circ. Physiol. 288(2), H839–H847 (2005)CrossRefGoogle Scholar
  47. W.W. Waters, M.G. Ziegler et al., Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J. Appl. Physiol. 92(2), 586–594 (2002)Google Scholar
  48. J.R. Williamson, N.J. Vogler et al., Regional variations in the width of the basement membrane of muscle capillaries in man and giraffe. Am. J. Pathol. 63(2), 359–370 (1971)Google Scholar
  49. J. Xiong, Y. Li et al., Effects of simulated microgravity on nitric oxide level in cardiac myocytes and its mechanism. Sci. China C. Life Sci. 46(3), 302–309 (2003)Google Scholar
  50. B.J. Yates, A.D. Miller et al., Physiological basis and pharmacology of motion sickness: an update. Brain Res. Bull. 47(5), 395–406 (1998)CrossRefGoogle Scholar

Copyright information

© Virginia E. Wotring 2012

Authors and Affiliations

  • Virginia E. Wotring
    • 1
  1. 1.Johnson Space CenterHoustonUSA

Personalised recommendations