Skip to main content

Ontogenesis of Myocardial Function

  • Chapter
  • First Online:
Ontogeny and Phylogeny of the Vertebrate Heart

Abstract

Function of developing heart is underlined by its morphology. Here we focus on development of cardiac pumping function, conduction, and metabolism in higher vertebrates. For simplicity, we distinguish three prenatal stages with different morphology, contraction mechanics, and conduction parameters: tubular heart, trabeculated one, and fully septated heart with coronary perfusion. Postnatal maturation involves namely quantitative changes and appearance of gender differences in parameters like tolerance to ischemia. The straight or looped tubular hearts operate as suction pumps and possess a caudally localized pacemaker and slow, conduction and contraction with a complete occlusion of lumen during systole. With the appearance of atrial and ventricular chambers, the preseptation trabeculated heart shares many similarities with the adult heart, but the same function is achieved by different means. The early embryonic heart is significantly more tolerant to oxygen deprivation than the fetal one. Even after septation, considerable maturation of cardiac morphology and function occurs during fetal and early postnatal period. The principal changes include spiraling of ventricular myoarchitecture, increase in capillary number, more regular arrangement of myofibrils and mitochondria and metabolic switch related to dramatically increased oxygen tension after birth. The newborn heart shows a higher resistance to hypoxia than the adult one, and it cannot be increased by ischemic preconditioning or adaptation to chronic hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanhaanen WT, Brons JF, Dominguez JN, Rana MS, Norden J, Airik R, Wakker V, de Gier-de VC, Brown NA, Kispert A, Moorman AF, Christoffels VM (2009) The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104(11):1267–1274

    Article  PubMed  CAS  Google Scholar 

  • Aanhaanen WT, Mommersteeg MT, Norden J, Wakker V, de Gier-de VC, Anderson RH, Kispert A, Moorman AF, Christoffels VM (2010) Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res 107(6):728–736

    Article  PubMed  CAS  Google Scholar 

  • Arguello C, Alanis J, Pantoja O, Valenzuela B (1986) Electrophysiological and ultrastructural study of the atrioventricular canal during the development of the chick embryo. J Mol Cell Cardiol 18(5):499–510

    Article  PubMed  CAS  Google Scholar 

  • Awad WI, Shattock MJ, Chambers DJ (1998) Ischemic preconditioning in immature myocardium. Circulation 98(19 Suppl):II206–II213

    Google Scholar 

  • Babicky A, Parizek J, Ostadalova I, Kolar J (1973) Initial solid food intake and growth of young rats in nests of different sizes. Physiol Bohemoslov 22(6):557–566

    PubMed  CAS  Google Scholar 

  • Bae S, Xiao Y, Li G, Casiano CA, Zhang L (2003) Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol 285(3):H983–990

    PubMed  CAS  Google Scholar 

  • Bai SL, Campbell SE, Moore JA, Morales MC, Gerdes AM (1990) Influence of age, growth, and sex on cardiac myocyte size and number in rats. Anat Rec 226(2):207–212

    Article  PubMed  CAS  Google Scholar 

  • Baker EJ, Boerboom LE, Olinger GN, Baker JE (1995) Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Physiol 268(3 Pt 2):H1165–1173

    PubMed  CAS  Google Scholar 

  • Baker JE, Holman P, Gross GJ (1999) Preconditioning in immature rabbit hearts: role of KATP channels. Circulation 99(9):1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298(6673):564–567

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH (1993) Growth in utero and serum cholesterol concentrations in adult life. BMJ 307(6918):1524–1527

    Article  PubMed  CAS  Google Scholar 

  • Bell JM, Slotkin TA (1988) Postnatal nutritional status influences development of cardiac adrenergic receptor binding sites. Brain Res Bull 21(6):893–896

    Article  PubMed  CAS  Google Scholar 

  • Bell JM, Whitmore WL, Queen KL, Orband-Miller L, Slotkin TA (1987) Biochemical determinants of growth sparing during neonatal nutritional deprivation or enhancement: ornithine decarboxylase, polyamines, and macromolecules in brain regions and heart. Pediatr Res 22(5):599–604

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar G, Arcilla RA, Lucas RV, Manasek FJ (1985) Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circ Res 57(5):759–766

    Article  PubMed  CAS  Google Scholar 

  • Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways [see comments]. J Clin Invest 104(11):1567–1573

    Article  PubMed  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  PubMed  CAS  Google Scholar 

  • Bolli R (2007) Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 292(1):H19–27

    Article  PubMed  CAS  Google Scholar 

  • Brodsky VY, Pelouch V, Arefyeva AM, Milerova M, Ostadal B (1992) Lack of proportionality between gene dosage and total muscle protein content in the rat heart. Int J Dev Biol 36(2):339–342

    PubMed  CAS  Google Scholar 

  • Chen F, De Diego C, Chang MG, McHarg JL, John S, Klitzner TS, Weiss JN (2010) Atrioventricular conduction and arrhythmias at the initiation of beating in embryonic mouse hearts. Dev Dyn 239(7):1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Wessels A, Gourdie RG, Thompson RP (2002) Spatiotemporal distribution of apoptosis in embryonic chicken heart. Dev Dyn 223:119–133

    Article  PubMed  Google Scholar 

  • Christoffels VM, Hoogaars WM, Moorman AF (2010) Patterning and development of the conduction system of the heart: origins of the conduction system in development. In: Rosenthal N, Harvey RP (eds) Heart development and regeneration, vol 1. Elsevier, London, pp 171–194

    Chapter  Google Scholar 

  • Chuck ET, Freeman DM, Watanabe M, Rosenbaum DS (1997) Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ Res 81(4):470–476

    Article  PubMed  CAS  Google Scholar 

  • Chvojkova Z, Ostadalova I, Ostadal B (2005) Low body weight and cardiac tolerance to ischemia in neonatal rats. Physiol Res 54(4):357–362

    PubMed  CAS  Google Scholar 

  • Clark EB, Hu N, Dummett JL, Vandekieft GK, Olson C, Tomanek R (1986) Ventricular function and morphology in chick embryo from stages 18 to 29. Am J Physiol 250(3 Pt 2):H407–413

    PubMed  CAS  Google Scholar 

  • de Jong F, Opthof T, Wilde AA, Janse MJ, Charles R, Lamers WH, Moorman AF (1992) Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 71(2):240–250

    Article  PubMed  Google Scholar 

  • deAlmeida A, McQuinn T, Sedmera D (2007) Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res 100(9):1363–1370

    Article  PubMed  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (1998) Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184(1–2):379–391

    Article  PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (2005) Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 66(2):222–232

    Article  PubMed  CAS  Google Scholar 

  • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD  +  and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276(4):2571–2575

    Article  PubMed  Google Scholar 

  • Dominguez JN, de la Rosa A, Navarro F, Franco D, Aranega AE (2008) Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development. Cardiovasc Res 78(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Dowell RT, Martin AF (1984) Perinatal nutritional modification of weanling rat heart contractile protein. Am J Physiol 247(6 Pt 2):H967–972

    PubMed  CAS  Google Scholar 

  • Drahota Z, Milerova M, Stieglerova A, Houstek J, Ostadal B (2004) Developmental changes of cytochrome c oxidase and citrate synthase in rat heart homogenate. Physiol Res 53(1):119–122

    PubMed  CAS  Google Scholar 

  • Dunnigan A, Hu N, Benson DW Jr, Clark EB (1987) Effect of heart rate increase on dorsal aortic flow in the stage 24 chick embryo. Pediatr Res 22(4):442–444

    Article  PubMed  CAS  Google Scholar 

  • Eastman NJ (1954) Mount Everest in utero. Am J Obstet Gynecol 67(4):701–711

    PubMed  CAS  Google Scholar 

  • Fitzpatrick CM, Shi Y, Hutchins WC, Su J, Gross GJ, Ostadal B, Tweddell JS, Baker JE (2005) Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am J Physiol Heart Circ Physiol 288(1):H62–68

    Article  PubMed  CAS  Google Scholar 

  • Foker JE, Berry J, Steinberger J (1999) Ventricular growth stimulation to achieve two-ventricular repair in unbalanced common atrioventricular canal. Prog Pediatr Cardiol 10:173–186

    Article  Google Scholar 

  • Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312(5774):751–753

    Article  PubMed  CAS  Google Scholar 

  • Friedman DM, Rupel A, Glickstein J, Buyon JP (2002) Congenital heart block in neonatal lupus: the pediatric cardiologist’s perspective. Indian J Pediatr 69(6):517–522

    Article  PubMed  Google Scholar 

  • Friedman DM, Kim MY, Copel JA, Davis C, Phoon CK, Glickstein JS, Buyon JP (2008) Utility of cardiac monitoring in fetuses at risk for congenital heart block: the PR Interval and Dexamethasone Evaluation (PRIDE) prospective study. Circulation 117(4):485–493

    Article  PubMed  Google Scholar 

  • Garita B, Jenkins MW, Han M, Zhou C, Vanauker M, Rollins AM, Watanabe M, Fujimoto JG, Linask KK (2010) Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am J Physiol Heart Circ Physiol 300(3):H879–891

    Article  CAS  Google Scholar 

  • Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P (2003) Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606(1–3):1–21

    PubMed  CAS  Google Scholar 

  • Gilbert RD (1998) Fetal myocardial responses to long-term hypoxemia. Comp Biochem Physiol A Mol Integr Physiol 119(3):669–674

    Article  PubMed  CAS  Google Scholar 

  • Gittenberger-de Groot AC, Mahtab EA, Hahurij ND, Wisse LJ, Deruiter MC, Wijffels MC, Poelmann RE (2007) Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system. Anat Rec (Hoboken) 290(1):115–22

    Google Scholar 

  • Giussani DA, Phillips PS, Anstee S, Barker DJ (2001) Effects of altitude versus economic status on birth weight and body shape at birth. Pediatr Res 49(4):490–494

    Article  PubMed  CAS  Google Scholar 

  • Gourdie RG, Green CR, Severs NJ, Anderson RH, Thompson RP (1993) Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature avian heart. Circ Res 72(2):278–289

    Article  PubMed  CAS  Google Scholar 

  • Gourdie RG, Harris BS, Bond J, Justus C, Hewett KW, O’Brien TX, Thompson RP, Sedmera D (2003) Development of the cardiac pacemaking and conduction system. Birth Defects Res 69C:46–57

    Google Scholar 

  • Grobety M, Sedmera D, Kappenberger L (1999) The chick embryo heart as an experimental setup for the assessment of myocardial remodeling induced by pacing. Pacing Clin Electrophysiol 22(5):776–782

    Article  PubMed  CAS  Google Scholar 

  • Gruber PJ, Kubalak SW, Pexieder T, Sucov HM, Evans RM, Chien KR (1996) RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J Clin Invest 98(6):1332–1343

    Article  PubMed  CAS  Google Scholar 

  • Hall CE, Hurtado R, Hewett KW, Shulimovich M, Poma CP, Reckova M, Justus C, Pennisi DJ, Tobita K, Sedmera D, Gourdie RG, Mikawa T (2004) Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development 131(3):581–592

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  Google Scholar 

  • Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR (2004) Maternal nutrient restriction alters gene expression in the ovine fetal heart. J Physiol 558(Pt 1):111–121

    Article  PubMed  CAS  Google Scholar 

  • Hildreth V, Anderson RH, Henderson DJ (2009) Autonomic innervation of the developing heart: origins and function. Clin Anat 22(1):36–46

    Article  PubMed  Google Scholar 

  • Hirota A, Kamino K, Komuro H, Sakai T, Yada T (1985) Early events in development of electrical activity and contraction in embryonic rat heart assessed by optical recording. J Physiol 369:209–227

    PubMed  CAS  Google Scholar 

  • Hoerter J (1976) Changes in the sensitivity to hypoxia and glucose deprivation in the isolated perfused rabbit heart during perinatal development. Pflugers Arch 363(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg M, Honbo N, Samorodin AJ (1976) Effects of hypoxia on cardiac growth in neonatal rat. Am J Physiol 231(5 Pt. 1):1445–1450

    Google Scholar 

  • Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21(9):1098–1112

    Article  PubMed  CAS  Google Scholar 

  • Hornberger LK, Sanders SP, Rein AJ, Spevak PJ, Parness IA, Colan SD (1995) Left heart obstructive lesions and left ventricular growth in the midtrimester fetus. A longitudinal study. Circulation 92(6):1531–1538

    Article  PubMed  CAS  Google Scholar 

  • Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13(8):970–974

    Article  PubMed  CAS  Google Scholar 

  • Hu N, Connuck DM, Keller BB, Clark EB (1991) Diastolic filling characteristics in the stage 12 to 27 chick embryo ventricle. Pediatr Res 29(4 Pt 1):334–337

    Article  PubMed  CAS  Google Scholar 

  • Hurtado A (1960) Some clinical aspects of life at high altitudes. Ann Intern Med 53:247–258

    PubMed  CAS  Google Scholar 

  • Hutchins GM, Bulkley BH, Moore GW, Piasio MA, Lohr FT (1978) Shape of the human cardiac ventricles. Am J Cardiol 41(4):646–654

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat 130(3):264–274

    Article  PubMed  CAS  Google Scholar 

  • Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O’Brien TX, Gourdie RG, Berul CI, Izumo S (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113(8):1130–1137

    PubMed  CAS  Google Scholar 

  • Jouk PS, Usson Y, Michalowicz G, Grossi L (2000) Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat Embryol (Berl) 202(2):103–118

    Article  CAS  Google Scholar 

  • Julia P, Young HH, Buckberg GD, Kofsky ER, Bugyi HI (1990) Studies of myocardial protection in the immature heart. II. Evidence for importance of amino acid metabolism in tolerance to ischemia. J Thorac Cardiovasc Surg 100(6):888–895

    PubMed  CAS  Google Scholar 

  • Kamino K, Hirota A, Fujii S (1981) Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290(5807):595–597

    Article  PubMed  CAS  Google Scholar 

  • Keller BB, Hu N, Clark EB (1990) Correlation of ventricular area, perimeter, and conotruncal diameter with ventricular mass and function in the chick embryo from stages 12 to 24. Circ Res 66(1):109–114

    Article  PubMed  CAS  Google Scholar 

  • Keller BB, MacLennan MJ, Tinney JP, Yoshigi M (1996) In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to -14.5 mouse embryos. Circ Res 79(2):247–255

    Article  PubMed  CAS  Google Scholar 

  • Knaapen MW, Vrolijk BC, Wenink AC (1996) Nuclear and cellular size of myocytes in different segments of the developing rat heart. Anat Rec 244(1):118–125

    Article  PubMed  CAS  Google Scholar 

  • Kolar F, Ostadal B, Prochazka J, Pelouch V, Widimsky J (1989) Comparison of cardiopulmonary response to intermittent high-altitude hypoxia in young and adult rats. Respiration 56(1–2):57–62

    PubMed  CAS  Google Scholar 

  • Kolditz DP, Wijffels MC, Blom NA, van der Laarse A, Hahurij ND, Lie-Venema H, Markwald RR, Poelmann RE, Schalij MJ, Gittenberger-de Groot AC (2008) Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation 117(12):1508–1517

    Article  PubMed  Google Scholar 

  • Komarek V, Malinovsky L, Lemez L (1982) Anatomia avium domesticarum et embryologia galli. Priroda, Bratislava, http://www.priroda.sk

    Article  PubMed  Google Scholar 

  • Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL, Conway SJ (2001) Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J 15(7):1209–1211

    PubMed  CAS  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Lamers WH, Wessels A, Verbeek FJ, Moorman AF, Viragh S, Wenink AC, Gittenberger-de Groot AC, Anderson RH (1992) New findings concerning ventricular septation in the human heart. Implications for maldevelopment. Circulation 86(4):1194–1205

    Article  PubMed  CAS  Google Scholar 

  • Laskey WK (2005) Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv 65(3):361–367

    Article  PubMed  Google Scholar 

  • Lavine KJ, Ornitz DM (2009) Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ Res 104(2):159–169

    Article  PubMed  CAS  Google Scholar 

  • Leaf DE, Feig JE, Vasquez C, Riva PL, Yu C, Lader JM, Kontogeorgis A, Baron EL, Peters NS, Fisher EA, Gutstein DE, Morley GE (2008) Connexin40 imparts conduction heterogeneity to atrial tissue. Circ Res 103(9):1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, Guizard N, McGrath E, Geva J, Annese D, Dunbar-Masterson C, Trainor B, Laussen PC, du Plessis AJ (2010) Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 121(1):26–33

    Article  PubMed  CAS  Google Scholar 

  • Manner J, Thrane L, Norozi K, Yelbuz TM (2009) In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function. Dev Dyn 238(12):3273–3284

    Article  PubMed  Google Scholar 

  • Marshall AC, Tworetzky W, Bergersen L, McElhinney DB, Benson CB, Jennings RW, Wilkins-Haug LE, Marx GR, Lock JE (2005) Aortic valvuloplasty in the fetus: technical characteristics of successful balloon dilation. J Pediatr 147(4):535–539

    Article  PubMed  Google Scholar 

  • Martin C, Yu AY, Jiang BH, Davis L, Kimberly D, Hohimer AR, Semenza GL (1998) Cardiac hypertrophy in chronically anemic fetal sheep: increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am J Obstet Gynecol 178(3):527–534

    Article  PubMed  CAS  Google Scholar 

  • McQuinn TC, Bratoeva M, Dealmeida A, Remond M, Thompson RP, Sedmera D (2007) High-frequency ultrasonographic imaging of avian cardiovascular development. Dev Dyn 236(12): 3503–3513

    Article  PubMed  Google Scholar 

  • Meiltz A, Kucera P, de Ribaupierre Y, Raddatz E (1998) Inhibition of bicarbonate transport protects embryonic heart against reoxygenation-induced dysfunction. J Mol Cell Cardiol 30(2): 327–335

    Article  PubMed  CAS  Google Scholar 

  • Milerova M, Charvatova Z, Skarka L, Ostadalova I, Drahota Z, Fialova M, Ostadal B (2010) Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 335(1–2):147–153

    Article  PubMed  CAS  Google Scholar 

  • Minot CS (1901) On a hitherto unrecognised circulation without capillaries in the organs of Vertebrata. Proc Boston Soc Nat Hist 29:185–215

    Google Scholar 

  • Miquerol L, Meysen S, Mangoni M, Bois P, van Rijen HV, Abran P, Jongsma H, Nargeot J, Gros D (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63(1):77–86

    Article  PubMed  CAS  Google Scholar 

  • Mommersteeg MT, Brown NA, Prall OW, de Gier-de Vries C, Harvey RP, Moorman AF, Christoffels VM (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101(9):902–909

    Google Scholar 

  • Moorman AF, Christoffels VM (2003) Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83(4):1223–1267

    PubMed  CAS  Google Scholar 

  • Mortola JP, Xu LJ, Lauzon AM (1990) Body growth, lung and heart weight, and DNA content in newborn rats exposed to different levels of chronic hypoxia. Can J Physiol Pharmacol 68(12):1590–1594

    Article  PubMed  CAS  Google Scholar 

  • Moscoso G, Pexieder T (1990) Variations in microscopic anatomy and ultrastructure of human embryonic hearts subjected to three different modes of fixation. Pathol Res Pract 186(6):768–774

    Article  PubMed  CAS  Google Scholar 

  • Muhlfeld C, Singer D, Engelhardt N, Richter J, Schmiedl A (2005) Electron microscopy and microcalorimetry of the postnatal rat heart (Rattus norvegicus). Comp Biochem Physiol A Mol Integr Physiol 141(3):310–318

    Article  PubMed  CAS  Google Scholar 

  • Murotsuki J, Challis JR, Han VK, Fraher LJ, Gagnon R (1997) Chronic fetal placental embolization and hypoxemia cause hypertension and myocardial hypertrophy in fetal sheep. Am J Physiol 272(1 Pt 2):R201–207

    PubMed  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Naeye RL (1966) Organ and cellular development in mice growing at simulated high altitude. Lab Invest 15(4):700–706

    PubMed  CAS  Google Scholar 

  • Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, Sedmera D (2008) Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat Rec (Hoboken) 291(10):1187–1199

    Article  Google Scholar 

  • Neffgen JF, Korecky B (1972) Cellular hyperplasia and hypertrophy in cardiomegalies induced by anemia in young and adult rats. Circ Res 30(1):104–113

    Article  PubMed  CAS  Google Scholar 

  • Nomura-Kitabayashi A, Phoon CKL, Kishigami S, Rosenthal J, Yamauchi Ÿ, Abe K, Yamamura K, Samtani R, Lo CW, Mishina Y (2009) Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest. Am J Physiol Heart Circ Physiol 297(5):H1617–1628

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Gilbert RD (1995) Cardiac enzyme activities in fetal and adult pregnant and nonpregnant sheep exposed to high-altitude hypoxemia. J Appl Physiol 79(4):1286–1289

    PubMed  CAS  Google Scholar 

  • Ostadal B, Kolar F (2007) Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol 158(2–3):224–236

    Article  PubMed  CAS  Google Scholar 

  • Ostadal B, Kolar F, Pelouch V, Widimsky J (1995) Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res 44(1):45–51

    PubMed  CAS  Google Scholar 

  • Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79(3):635–659

    PubMed  CAS  Google Scholar 

  • Ostadal B, Netuka I, Maly J, Besik J, Ostadalova I (2009) Gender differences in cardiac ischemic injury and protection–experimental aspects. Exp Biol Med (Maywood) 234(9):1011–1019

    Article  CAS  Google Scholar 

  • Ostadalova I, Kolar F, Ostadal B, Rohlicek V, Rohlicek J, Prochazka J (1993) Early postnatal development of contractile performance and responsiveness to Ca2+, verapamil and ryanodine in the isolated rat heart. J Mol Cell Cardiol 25(6):733–740

    Article  PubMed  CAS  Google Scholar 

  • Ostadalova I, Ostadal B, Kolar F (1995) Effect of prenatal hypoxia on contractile performance and responsiveness to Ca2+ in the isolated perinatal rat heart. Physiol Res 44(2):135–137

    PubMed  CAS  Google Scholar 

  • Ostadalova I, Ostadal B, Kolar F, Parratt JR, Wilson S (1998) Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30(4):857–865

    Article  PubMed  CAS  Google Scholar 

  • Ostadalova I, Ostadal B, Jarkovska D, Kolar F (2002) Ischemic preconditioning in chronically hypoxic neonatal rat heart. Pediatr Res 52(4):561–567

    PubMed  CAS  Google Scholar 

  • Ostadalova I, Charvatova Z, Wilhelm J (2010) Lipofuscin-like pigments in the rat heart during early postnatal development: effect of selenium supplementation. Physiol Res 59(6):881–886

    PubMed  CAS  Google Scholar 

  • Patterson AJ, Chen M, Xue Q, Xiao D, Zhang L (2010) Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts. Circ Res 107(3):365–373

    Article  PubMed  CAS  Google Scholar 

  • Pelouch V, Kolar F, Milerova M, Ostadal B (1997) Effect of the preweaning nutritional state on the cardiac protein profile and functional performance of the rat heart. Mol Cell Biochem 177(1–2):221–228

    Article  PubMed  CAS  Google Scholar 

  • Pexieder T, Janecek P (1984) Organogenesis of the human embryonic and early fetal heart as studied by microdissection and SEM. In: Nora JJ, Takao A (eds) Congenital heart disease: causes and processes. Futura, New York, pp 401–421

    Google Scholar 

  • Phoon CK (2006) Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr Res 60(1):14–21

    Article  PubMed  Google Scholar 

  • Phoon CK, Ji RP, Aristizabal O, Worrad DM, Zhou B, Baldwin HS, Turnbull DH (2004) Embryonic heart failure in NFATc1-/- mice: novel mechanistic insights from in utero ultrasound biomicroscopy. Circ Res 95(1):92–99

    Article  PubMed  CAS  Google Scholar 

  • Raddatz E, Servin M, Kucera P (1992) Oxygen uptake during early cardiogenesis of the chick. Am J Physiol 262(4 Pt 2):H1224–1230

    PubMed  CAS  Google Scholar 

  • Rakusan K, Poupa O (1966) Differences in capillary supply of hypertrophic and hyperplastic hearts. Cardiologia 49(5):293–298

    Article  PubMed  CAS  Google Scholar 

  • Rakusan K, Chvojkova Z, Oliviero P, Ostadalova I, Kolar F, Chassagne C, Samuel JL, Ostadal B (2007) ANG II type 1 receptor antagonist irbesartan inhibits coronary angiogenesis stimulated by chronic intermittent hypoxia in neonatal rats. Am J Physiol Heart Circ Physiol 292(3):H1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Reckova M, Rosengarten C, deAlmeida A, Stanley CP, Wessels A, Gourdie RG, Thompson RP, Sedmera D (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93(1):77–85

    Article  PubMed  CAS  Google Scholar 

  • Rein AJ, Mevorach D, Perles Z, Gavri S, Nadjari M, Nir A, Elchalal U (2009) Early diagnosis and treatment of atrioventricular block in the fetus exposed to maternal anti-SSA/Ro-SSB/La antibodies: a prospective, observational, fetal kinetocardiogram-based study. Circulation 119(14):1867–1872

    Article  PubMed  CAS  Google Scholar 

  • Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE, Jalife J, Fishman GI (2001) Visualization and functional characterization of the developing murine cardiac conduction system. Development 128:1785–1792

    PubMed  CAS  Google Scholar 

  • Rentschler S, Zander J, Meyers K, France D, Levine R, Porter G, Rivkees SA, Morley GE, Fishman GI (2002) Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci USA 99(16):10464–10469

    Article  PubMed  CAS  Google Scholar 

  • Riva A, Hearse D (2009) Age-dependent changes in myocardial susceptibility to ischemic injury. Cardioscience 4:58–92

    Google Scholar 

  • Romano R, Rochat AC, Kucera P, De Ribaupierre Y, Raddatz E (2001) Oxidative and glycogenolytic capacities within the developing chick heart. Pediatr Res 49(3):363–372

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal N, Harvey RP (2010) Heart development and regeneration, vol 2, vol 2. Elsevier, London

    Google Scholar 

  • Rothenberg F, Nikolski V, Watanabe M, Efimov I (2005) Electrophysiology and anatomy of embryonic rabbit hearts before and after septation. Am J Physiol Heart Circ Physiol 288(1): H344–351

    Article  PubMed  CAS  Google Scholar 

  • Rudolph AM (2000) Myocardial growth before and after birth: clinical implications. Acta Paediatr 89(2):129–133

    Article  PubMed  CAS  Google Scholar 

  • Sadler TW (2011) Langman’s medical embryology, 11th edn. Lippincot Williams & Wilkins, Baltimore

    Google Scholar 

  • Saiki Y, Konig A, Waddell J, Rebeyka IM (1997) Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal guinea pig hearts. Surgery 122(2):412–419

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Hirota A, Kamino K (1996) Video-imaging assessment of initial beating patterns of the early embryonic chick heart. Jpn J Physiol 46(6):465–472

    Article  PubMed  CAS  Google Scholar 

  • Samanek M, Bass A, Ostadal B, Hucin B, Stejskalova M (1989) Effect of hypoxaemia on enzymes supplying myocardial energy in children with congenital heart disease. Int J Cardiol 25(3): 265–269

    Article  PubMed  CAS  Google Scholar 

  • Sankova B, Machalek J, Sedmera D (2010) Effects of mechanical loading on early conduction system differentiation in the chick. Am J Physiol Heart Circ Physiol 298(5):H1571–1576

    Article  PubMed  CAS  Google Scholar 

  • Schagger H, Noack H, Halangk W, Brandt U, von Jagow G (1995) Cytochrome-c oxidase in developing rat heart. Enzymic properties and amino-terminal sequences suggest identity of the fetal heart and the adult liver isoform. Eur J Biochem 230(1):235–241

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D (2005) Form follows function: developmental and physiological view on ventricular myocardial architecture. Eur J Cardiothorac Surg 28(4):526–528

    Article  PubMed  Google Scholar 

  • Sedmera D (2011) Function and form in the developing cardiovascular system. Cardiovasc Res 91(2):252–259

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Pexieder T, Hu N, Clark EB (1997) Developmental changes in the myocardial architecture of the chick. Anat Rec 248(3):421–432

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB (1999) Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254(2):238–252

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Kucera P, Raddatz E (2002) Developmental changes in cardiac recovery from anoxia-reoxygenation. Am J Physiol Regul Integr Comp Physiol 283(2):R379–388

    PubMed  CAS  Google Scholar 

  • Sedmera D, Reckova M, DeAlmeida A, Coppen SR, Kubalak SW, Gourdie RG, Thompson RP (2003a) Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat Rec 274A(1):773–777

    Article  Google Scholar 

  • Sedmera D, Reckova M, DeAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP (2003b) Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am J Physiol Heart Circ Physiol 284:H1152–H1160

    PubMed  CAS  Google Scholar 

  • Sedmera D, Reckova M, Bigelow MR, DeAlmeida A, Stanley CP, Mikawa T, Gourdie RG, Thompson RP (2004) Developmental transitions in electrical activation patterns in chick embryonic heart. Anat Rec 280A(2):1001–1009

    Article  Google Scholar 

  • Sedmera D, Reckova M, Rosengarten C, Torres MI, Gourdie RG, Thompson RP (2005a) Optical mapping of electrical activation in developing heart. Microsc Microanal 11(3):209–215

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Cook AC, Shirali G, McQuinn TC (2005b) Current issues and perspectives in hypoplasia of the left heart. Cardiol Young 15(1):56–72

    Article  PubMed  Google Scholar 

  • Sedmera D, Wessels A, Trusk TC, Thompson RP, Hewett KW, Gourdie RG (2006) Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture. Am J Physiol Heart Circ Physiol 291(4):H1646–1652

    Article  PubMed  CAS  Google Scholar 

  • Skarka L, Bardova K, Brauner P, Flachs P, Jarkovska D, Kopecky J, Ostadal B (2003) Expression of mitochondrial uncoupling protein 3 and adenine nucleotide translocase 1 genes in developing rat heart: putative involvement in control of mitochondrial membrane potential. J Mol Cell Cardiol 35(3):321–330

    Article  PubMed  CAS  Google Scholar 

  • Tamaddon HS, Vaidya D, Simon AM, Paul DL, Jalife J, Morley GE (2000) High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circ Res 87(10):929–936

    Article  PubMed  CAS  Google Scholar 

  • Tchervenkov CI, Jacobs ML, Tahta SA (2000) Congenital Heart Surgery Nomenclature and Database Project: hypoplastic left heart syndrome. Ann Thorac Surg 69(4 Suppl):S170–179

    Article  PubMed  CAS  Google Scholar 

  • Tenthorey D, de Ribaupierre Y, Kucera P, Raddatz E (1998) Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation. J Cardiovasc Pharmacol 31(2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Tintu A, Rouwet E, Verlohren S, Brinkmann J, Ahmad S, Crispi F, van Bilsen M, Carmeliet P, Staff AC, Tjwa M, Cetin I, Gratacos E, Hernandez-Andrade E, Hofstra L, Jacobs M, Lamers WH, Morano I, Safak E, Ahmed A, le Noble F (2009) Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS One 4(4):e5155

    Article  PubMed  CAS  Google Scholar 

  • Tobita K, Garrison JB, Li JJ, Tinney JP, Keller BB (2005) Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol 283(1):193–201

    PubMed  Google Scholar 

  • Tomanek RJ (1996) Formation of the coronary vasculature: a brief review. Cardiovasc Res 31(Spec No):E46–E51

    Google Scholar 

  • Tran L, Kucera P, de Ribaupierre Y, Rochat AC, Raddatz E (1996) Glucose is arrhythmogenic in the anoxic-reoxygenated embryonic chick heart. Pediatr Res 39(5):766–773

    Article  PubMed  CAS  Google Scholar 

  • Tworetzky W, Wilkins-Haug L, Jennings RW, van der Velde ME, Marshall AC, Marx GR, Colan SD, Benson CB, Lock JE, Perry SB (2004) Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation 110(15):2125–2131

    Article  PubMed  Google Scholar 

  • Tworetzky W, McElhinney DB, Marx GR, Benson CB, Brusseau R, Morash D, Wilkins-Haug LE, Lock JE, Marshall AC (2009) In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics 124(3):e510–518

    Article  PubMed  Google Scholar 

  • Valderrabano M, Chen F, Dave AS, Lamp ST, Klitzner TS, Weiss JN (2006) Atrioventricular ring reentry in embryonic mouse hearts. Circulation 114(6):543–549

    Article  PubMed  Google Scholar 

  • van Kempen MJ, ten Velde I, Wessels A, Oosthoek PW, Gros D, Jongsma HJ, Moorman AF, Lamers WH (1995) Differential connexin distribution accommodates cardiac function in different species. Microsc Res Tech 31(5):420–436

    Article  PubMed  Google Scholar 

  • Vassall-Adams PR (1982) The development of the atrioventricular bundle and its branches in the avian heart. J Anat 134(Pt 1):169–183

    PubMed  CAS  Google Scholar 

  • Verburg BO, Jaddoe VW, Wladimiroff JW, Hofman A, Witteman JC, Steegers EA (2008) Fetal hemodynamic adaptive changes related to intrauterine growth: the Generation R Study. Circulation 117(5):649–659

    Article  PubMed  Google Scholar 

  • Vetter R, Studer R, Reinecke H, Kolar F, Ostadalova I, Drexler H (1995) Reciprocal changes in the postnatal expression of the sarcolemmal Na  +  -Ca(2+)-exchanger and SERCA2 in rat heart. J Mol Cell Cardiol 27(8):1689–1701

    Article  PubMed  CAS  Google Scholar 

  • Vinten-Johansen J (2007) Postconditioning: a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion. Heart Fail Rev 12(3–4):235–244

    Article  PubMed  CAS  Google Scholar 

  • Viragh S, Challice CE (1977a) The development of the conduction system in the mouse embryo heart. II. Histogenesis of the atrioventricular node and bundle. Dev Biol 56(2):397–411

    Article  PubMed  CAS  Google Scholar 

  • Viragh S, Challice CE (1977b) The development of the conduction system in the mouse embryo heart. I. The first embryonic A-V conduction pathway. Dev Biol 56(2):382–396

    Article  PubMed  CAS  Google Scholar 

  • Vuillemin M, Pexieder T (1989) Normal stages of cardiac organogenesis in the mouse: II. Development of the internal relief of the heart. Am J Anat 184(2):114–128

    Article  PubMed  CAS  Google Scholar 

  • Wachtlova M, Mares V, Ostadal B (1977) DNA synthesis in the ventricular myocardium of young rats exposed to intermittent high altitude (IHA) hypoxia. An autoradiographic study. Virchows Arch B Cell Pathol 24(4):335–342

    PubMed  CAS  Google Scholar 

  • Wessels A, Sedmera D (2003) Developmental anatomy of the heart: a tale of mice and man. Physiol Genomics 15(3):165–176

    PubMed  Google Scholar 

  • Wessels A, Vermeulen JL, Verbeek FJ, Viragh S, Kalman F, Lamers WH, Moorman AF (1992) Spatial distribution of “tissue-specific” antigens in the developing human heart and skeletal muscle. III. An immunohistochemical analysis of the distribution of the neural tissue antigen G1N2 in the embryonic heart; implications for the development of the atrioventricular conduction system. Anat Rec 232(1):97–111

    Article  PubMed  CAS  Google Scholar 

  • Xavier-Neto J, Davidson B, Simoes-Costa MS, Castro RA, Castillo HA, Sampaio AC, Azambuja AP (2010) Evolutionary origins of hearts. In: Rosenthal N, Harvey RP (eds) Heart development and regeneration, vol 1. Elsevier, London, pp 3–46

    Chapter  Google Scholar 

  • Xue Q, Zhang L (2009) Prenatal hypoxia causes a sex-dependent increase in heart susceptibility to ischemia and reperfusion injury in adult male offspring: role of protein kinase C epsilon. J Pharmacol Exp Ther 330(2):624–632

    Article  PubMed  CAS  Google Scholar 

  • Yelbuz TM, Choma MA, Thrane L, Kirby ML, Izatt JA (2002) Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation 106(22):2771–2774

    Article  PubMed  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83(4):1113–1151

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank to all our past and present collaborators who were instrumental in generating results discussed in this paper and helped to shape our thinking about the developing heart.

Funding: Supported by Ministry of Education VZ 0021620806 and 1 M0510, Academy of Sciences Purkinje Fellowship to D.S., and institutional AV0Z50110509. Further support comes from Grant Agency of the Czech Republic 304/08/0615 and P302/11/1308.

Conflict of Interest None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sedmera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sedmera, D., Ostadal, B. (2012). Ontogenesis of Myocardial Function. In: Sedmera, D., Wang, T. (eds) Ontogeny and Phylogeny of the Vertebrate Heart. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3387-3_7

Download citation

Publish with us

Policies and ethics